
Towards Ubiquitous Edge Intelligence: Efficient ML 
Algorithm and Hardware Co-Design 

Presenter: Haoran You        Advisor: Yingyan Lin

Georgia Institute of Technology



Research Project Summary

Depth

Layer

MAC

Energy Pyramid of DNNs



Research Project Summary

Depth

Layer

MAC

Energy Pyramid of DNNs

Algorithm
Pruning Quantization

NAS
Efficient Training & Inference

ShiftAddNet
…



Research Project Summary

Depth

Layer

MAC

Energy Pyramid of DNNs

Algorithm
Pruning Quantization

NAS
Efficient Training & Inference

ShiftAddNet

Hardware
Accelerator

Micro-architecture
Memory 
Hierarchy

Dataflow & Mapping

Scheduling

… …

Algorithm-Hardware Co-Design



Table of Content

 Algorithm-Hardware Co-Design

EyeCoD [ISCA’22]ViTCoD [HPCA’23] ShiftAddNAS [ICML’22]
& NASA [ICCAD’22]



ViTCoD: Vision Transformer Acceleration via 
Dedicated Algorithm and Accelerator Co-Design

Haoran You1, Zhanyi Sun2, Huihong Shi1, Zhongzhi Yu1, 
Yang Zhao2, Yongan Zhang1, Chaojian Li1, Baopu Li3, and Yingyan Lin1

1Georgia Institute of Technology
2Rice University

3Oracle Health and AI

The 29th IEEE International Symposium on 
High-Performance Computer Architecture (HPCA 2023)



Background of Vision Transformer (ViTs)

 ViTs achieve SOTA performance on various vision tasks 
 Input: 2D image  input tokens/patches

 Core Model: Self-Attention and MLP

Input Tokens

ViT Models
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Background of Vision Transformer (ViTs)

 ViTs achieve SOTA performance on various vision tasks 
 Input: 2D image  input tokens

 Core Model: Self-Attention and MLP

 But ViTs still require a high computational cost
as compared to convolutional networks (CNNs)

Input Tokens

ViT Models



What are the Bottlenecks in ViTs?

 The bottleneck is the self-attention module
 We profile seven ViT models to show the breakdown

 In terms of FLOPs, self-attention is not as dominant as MLPs
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What are the Bottlenecks in ViTs?

EdgeGPU: https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/ 

 The bottleneck is the self-attention module
 We profile seven ViT models to show the breakdown

 In terms of FLOPs, self-attention is not as dominant as MLPs
 In terms of real Latency, it consistently accounts for over 50% latency

As high as 69%!MatMul occupy up to 53%!



Can Previous Attention Accelerators Help?

[1] Sanger: A Co-Design Framework for Enabling Sparse Attention using Reconfigurable Architecture, MICRO 2021
[2] DOTA: detect and omit weak attentions for scalable transformer acceleration, ASPLOS 2022

 The bottleneck is the self-attention module
 We profile seven ViT models to show the breakdown

 In terms of FLOPs, self-attention is not as dominant as MLPs
 In terms of real Latency, it consistently accounts for over 50% latency

 Can we use previous sparse attention accelerator to handle it?
 No, they are dedicated to NLP Transformers

Reconfigurable Architecture
E.g., Sanger [1], DOTA [2], etc

Dynamic Sparsity Patterns
for Different Inputs



Attention in ViTs and NLP Transformers

 Comparison of self-attentions in ViTs and NLP Transformers
 Difference 1: 

Fixed number of input tokens vs. dynamic number of input tokens

Input Tokens for NLP Transformer [1]

[1] Learned Token Pruning for Transformers, KDD 2022

Input Tokens for ViTs



Attention in ViTs and NLP Transformers

 Comparison of self-attentions in ViTs and NLP Transformers
 Difference 2:

Up to 90% sparsity in ViTs’ attention maps vs. 50% ~ 60% in NLP 
Transformer’s attention maps



Challenges and Unexplored Opportunities for ViTs?

 Challenge 1: Accelerate ViTs w/o on-the-fly reconfiguration?
 Opportunity 1: Fixed attention sparse patterns in ViTs

 ✅ Fixed sparse patterns and thus stationary data accesses
 ✅ Strong “tokens”

Fixed sparse pattern Reorder “strong” tokensDense attention map
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 Challenge 2: How to balance computations vs. data movements?
 Sparse attention makes data movements a bigger problem
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Proposed ViTCoD: Algorithm & Accel. Co-Design

 Proposed ViT algorithm & accelerator co-design (ViTCoD) for 
accelerating ViTs with sparse attention
 Split and conquer algorithm to cluster the workloads into denser/sparser
 Auto-encoder module to compress attention heads before transmitting

Algorithm & Accelerator
Co-Design

ViTCoD AcceleratorViTCoD Algorithm

Eye segmentation using RITNet
Split and Conquer

Gaze estimation using FBNet
Auto-encoder

Save both computation & 
data movements

and

Dedicated acceleration



Our Overall Contributions in ViTCoD

In this work, we
 Propose the first Vision Transformer algorithm & accelerator co-design 

framework, dubbed ViTCoD

 On the algorithm level, ViTCoD
 prunes and polarizes the attention maps to have either denser or sparser 

fixed patterns for regularizing two levels of workloads
 integrate a lightweight and learnable auto-encoder module to enable 

trading dominant high-cost data movements for lower-cost computations

 On the hardware level, ViTCoD 
 adopts a dedicated accelerator to simultaneously handle the enforced 

denser and sparser workloads 
 integrates on-chip encoder and decoder engines to reduce data movements



ViTCoD Overview

ViTCoD Algorithm: 

The core idea on the algorithm level is to reduce both computations and 
data movements in core self-attention modules.

ViT Self-attention
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ViTCoD Algorithm: 

The core idea on the algorithm level is to reduce both computations and 
data movements in core self-attention modules.

ViT Self-attention

Split and Conquer  Save Computations

Auto-encoder Module  Save Data Movements



ViTCoD Overview

ViTCoD Accelerator: 

The core idea on the accelerator level is to develop a dedicated accelerator  
for supporting algorithms  accelerated computations and data movements

Auto-encoder Module 
 Save Data Movements

Split and Conquer 
 Save Computations



ViTCoD Overview

ViTCoD Accelerator: 

The core idea on the accelerator level is to develop a dedicated accelerator  
for supporting algorithms  accelerated computations and data movements

Auto-encoder Module 
 Save Data Movements

Split and Conquer 
 Save Computations



ViTCoD Algorithm: Split and Conquer

 Challenge 1: How to aggressively reduce the computation?
 Design insights: 

 Pruning with fixed masks
 Attention map reordering

 ViTCoD leverages the following observation: 
 The attention maps can be pruned up to 90% sparsity with fixed masks

 There are “strong” tokens in the attention

Fixed sparse pattern Reorder “strong” tokensDense attention map



ViTCoD Algorithm: Split and Conquer

 Visualizing the pruned or reordered attention maps on DeiT-B



ViTCoD Algorithm: Auto-Encoder

 Challenge 2: How to aggressively reduce the data movements?
 Design insights: 

 Trade costly data movements with computations

 ViTCoD leverages the following observation: 
 There is redundancy among attention heads
 Compress the Q/K data before transmitting from off-chip to on-chip



ViTCoD Algorithm: Auto-Encoder

 Visualizing the training trajectory of DeiT-T/S/B with our 
proposed auto-encoder (AE) modules



ViTCoD Algorithm: Training Pipeline

 Overall training pipeline
 Input: 

 Pretrained ViT models

 Step 1: Insert AE modules
 Finetuning for 100 epochs

 Step 2: Split and conquer
 Prune and reorder
 Finetuning for 100 epochs



ViTCoD Accelerator: Opportunities

 Challenge: How to fully exploit the potential of ViTCoD algorithm?

 Opportunities:

 Fixed and structurally sparse Attention



ViTCoD Accelerator: Opportunities

 Challenge: How to fully exploit the potential of ViTCoD algorithm?

 Opportunities:

 Fixed and structurally sparse Attention

 Compact Q and K representation



ViTCoD Accelerator: Design Explorations

 Challenge: How to fully exploit the potential of ViTCoD algorithm?

 Design explorations:

 Micro-architecture: single one or multiple sub-accelerator?

 Latter with merely two diverse workloads: denser or sparser



ViTCoD Accelerator: Design Explorations

 Challenge: How to fully exploit the potential of ViTCoD algorithm?

 Design explorations:

 Dataflows: S-stationary or K-stationary?

S-stationary



ViTCoD Accelerator: Design Explorations

 Challenge: How to fully exploit the potential of ViTCoD algorithm?

 Design explorations:

 Dataflows: S-stationary or K-stationary?

 The latter is better suited for resulting sparse attention patterns

S-stationary K-stationary



ViTCoD Accelerator: Micro-Architecture

 Our micro-architecture design features
 Two-pronged architecture
 Encoder and decoder engines
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ViTCoD Accelerator: Micro-Architecture

 Our micro-architecture design features
 Two-pronged architecture
 Encoder and decoder engines

 Tiling and spatial or temporal mappings
 Q * KT 

 S * V



ViTCoD Accelerator: Micro-Architecture

 Our micro-architecture design features
 Two-pronged architecture
 Encoder and decoder engines
 Inter- or Intra-MAC accumulation



ViTCoD Accelerator: Micro-Architecture

 Our micro-architecture design features
 Two-pronged architecture
 Encoder and decoder engines
 Inter- or Intra-MAC accumulation
 Reconfigurability



Evaluation Setup and Baselines

 Evaluation Setup
 Seven ViT Models: 

 DeiT-Base/Small/Tiny, LeViT-128/192/256 for image classification
 Strided Transformer for human pose estimation

 Datasets: 
 ImageNet and Human3.6M

 Metrics: 
 Accuracy, Latency speedups

 Benchmark Baselines
 Commercial devices

 CPU, GPU, EdgeGPU
 Customized accelerators

 SpAtten, Sanger



Evaluation Setup and Baselines

 Benchmark Baselines:
 Commercial devices

 CPU, GPU, EdgeGPU

[8] K. Bong, et. al., JSSC’16



Evaluation Setup and Baselines

 Evaluation Setup
 Layout floorplan



Evaluation: ViTCoD over SOTA Accelerators

 ViTCoD over CPU/GPU platforms
 ViTCoD achieves up to 235.3x, 160.6x, and 86x speedups over CPU, 

EdgeGPU and GPU

 ViTCoD over SOTA attention accelerators
 ViTCoD achieves 10.1x and 6.8x speedups over SpAtten and Sanger

Core attention speedups (90% sparsity)



Evaluation of ViTCoD Algorithm

 Evaluate ViTCoD’s split and conquer algorithm
 ViTCoD reduce 45.1% ∼ 85.8% and 72.0% ∼ 84.3% latency of attention 

layers for DeiT and LeViT, respectively, while leading to a comparable 
model accuracy (i.e., < 1% accuracy drop)



Evaluation of ViTCoD Algorithm

 Evaluate ViTCoD’s auto-encoder module
 ViTCoD compress 50% Q/K vectors, e.g., 12 heads  6 heads, with < 

0.5% accuracy drops



Evaluation of ViTCoD Accelerators

 Averaged across 60% ~ 90% sparsity
 ViTCoD achieves 6.8x and 4.3x speedups over SpAtten and Sanger
 ViTCoD achieves 9.8x energy efficiency over the most competitive 

baseline Sanger
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Summary

In this work, we

 Propose the first Vision Transformer algorithm & 
accelerator co-design framework, dubbed ViTCoD

 On the algorithm level, ViTCoD integrates a split and 
conquer training and an auto-encoder module without 
compromising the accuracy

 On the hardware level, GCoD further develop a dedicated 
two-pronged accelerator with encoder/decoder modules

Acknowledge: NSF EPCN & RTML programs
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Background: Tremendously Growing AR/VR Market

 Augmented and virtual reality (VR/AR) market is blooming
 $766 billion by 2025
 Compound annual growth rate (CAGR) of 73.7% [1]

[1] Market Research Future (MRFR), 2021



Background: Eye Tracking in AR/VR

 Eye tracking is an essential human-machine interface in AR/VR
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Background: Eye Tracking in AR/VR

 Eye tracking is an essential human-machine interface in AR/VR
 AR/VR devices with eye tracking modalities

 Foveated rendering application [2]

[2] The Evolution of High Performance Foveated Rendering, Qualcomm 2021



Motivation: Eye Tracking in AR/VR

 Eye tracking is an essential human-machine interface in AR/VR
 Challenges for eye tracking in AR/VR [3]
 >240 FPS
 Small form factor
 Power consumption in mW
 Visual privacy



Motivation: Eye Tracking in AR/VR

 Eye tracking is an essential human-machine interface in AR/VR
 Challenges for eye tracking in AR/VR [3]
 >240 FPS
 Small form factor
 Power consumption in mW
 Visual privacy

 Existing works [4,5]
 An order of magnitude slower (i.e., 30 FPS)
 Large form factor and low visual privacy due to 

the adopted lens-based cameras

 Fail to meet real-time application requirements 

[3] C. Liu, et. al., IDEM’21 
[4] Y. Feng, et. al., IEEE VR’22 
[5] K Bong, et. al., VLSI’15



 Why existing eye tracking can not satisfy the requirements?
 Rely on lens-based cameras  Limitations

 Large form factor
 High communication cost between camera and backend processor
 Low visual privacy

Limitations of Existing Solutions



Unexplored Opportunities for Eye Tracking?

 Opportunity 1: Can we build a lensless eye tracking system?
 A lensless camera, i.e., FlatCam [6]

 ✅ Small form factor, i.e., 5-10× thinner
 ✅ Visual privacy

[6] M. Asif, et. al., TCI’17



Unexplored Opportunities for Eye Tracking?

 Opportunity 1: Can we build a lensless eye tracking system?
 A lensless camera, i.e., FlatCam [6]

 ✅ Small form factor, i.e., 5-10× thinner
 ✅ Visual privacy

 Opportunity 2: Leverage end-to-end co-design?
 An AI acceleration chip featuring algorithm and accelerator co-design

 ✅ >240 FPS 
 ✅ mW power consumption

[6] M. Asif, et. al., TCI’17



 Proposed FlatCam-based algorithm & accelerator co-design 
(EyeCoD) for accelerating eye tracking in AR/VR devices
 Incorporating three features:

 Sensing-processing interface
 Predict-then-focus algorithm pipeline
 Dedicated accelerator attached to FlatCam

Proposed EyeCoD: Algorithm & Accel. Co-Design

Algorithm & Accelerator
Co-Design

EyeCoD AcceleratorEyeCoD Algorithm

Eye segmentation using RITNet
ROI Prediction

Gaze estimation using FBNet
Gaze Estimation

Predict-then-focus Pipeline



 Proposed FlatCam-based algorithm & accelerator co-design 
(EyeCoD) for accelerating eye tracking in AR/VR devices

 Challenges to achieve EyeCoD: small form factor vs. large DNNs
 On the algorithm level, how to track FlatCam captured eye images 

efficiently without compromising task accuracy?
 On the hardware level, how to leverage and support EyeCoD algorithm 

for further boosting the acceleration efficiency?

Proposed EyeCoD: Algorithm & Accel. Co-Design

Algorithm & Accelerator
Co-Design

EyeCoD AcceleratorEyeCoD Algorithm

Eye segmentation using RITNet
ROI Prediction

Gaze estimation using FBNet
Gaze Estimation

Predict-then-focus Pipeline



Our Overall Contributions in EyeCoD

In this work, we
 Propose the first lensless FlatCam-based eye tracking algorithm & 

accelerator co-design framework, dubbed EyeCoD

 On the system level, EyeCoD advocates lensless FlatCams instead of 
lens-based cameras to facilitate small form factor in mobile VR devices

 On the algorithm level, EyeCoD integrates a predict-then-focus pipeline 
to first predict ROIs and then estimate gazes merely based on ROIs,
without compromising task accuracy

 On the hardware level, EyeCoD further develops a dedicated 
accelerator attached to FlatCams for accelerating EyeCoD algorithm



EyeCoD Overview: Eye Tracking System

EyeCoD Overall System: 

The core idea on the system level is to replace lens-based cameras with 
lensless FlatCams thinner + reduced distance btw cameras and processors
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a binary coded mask



Proposed EyeCoD System for Eye Tracking: Overview 

EyeCoD System: 

The core idea on the system level is to replace lens-based cameras with 
lensless FlatCams thinner + reduced distance btw cameras and processors

a binary coded mask

Least-square objective:
 X: Reconstructed image
 y: sensor measurement



Proposed EyeCoD System for Eye Tracking: Overview 

EyeCoD Algorithm: 

The core idea on the algorithm level is to first predict the ROIs before 
estimating the gaze direction  reduced the required computational cost 



EyeCoD Accelerator: 

The core idea on the accelerator level is to develop a dedicated accelerator 
attached to FlatCams accelerated computations and data movements

Proposed EyeCoD System for Eye Tracking: Overview 



EyeCoD Algorithm: Predict-then-focus Pipeline

 Challenge: How to aggressively reduce the model complexity?
 Design insight: 

 Perform gaze estimation after extracting ROIs

 EyeCoD leverages the following fact: 
 The movement of eyes is much slower than that of gaze direction [7]

 ROI prediction is only needed once for every 50 frames
 Gaze estimation need to be computed every frame

[7] C. Palmero, et. al., Sensor’21



EyeCoD Algorithm: Predict-then-focus Pipeline

 The proposed predict-then-focus pipeline
 Stage 1: Image reconstruction after FlatCam

 Sensing-processing interface: replaces both camera sensors and the first 
layer of the eye tracking model  FlatCam’s coded masks
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 Sensing-processing interface: replaces both camera sensors and the first 
layer of the eye tracking model  FlatCam’s coded masks

 Stage 2: ROI prediction
 Predict and crop the

most informative area of eyes
(i.e., pupil, iris, and sclera) 

 Once per 50 frames



EyeCoD Algorithm: Predict-then-focus Pipeline

 The proposed predict-then-focus pipeline
 Stage 1: Image reconstruction after FlatCam

 Sensing-processing interface replaces both FlatCam sensing and the first 
layer of following eye tracking models  FlatCam’s coded masks

 Stage 2: ROI prediction
 Predict and crop the

most informative area of eyes
(i.e., pupil, iris, and sclera) 

 Once per 50 frames

 Stage 3: Gaze estimation
 Estimate the gaze direction

based on extracted ROIs
 Perform for each frame



EyeCoD Accelerator

 Challenge: How to fully exploit the potential of EyeCoD algorithm?

 Design challenges and considerations

 Our proposed EyeCoD accelerator features:
 Partial time-multiplexing mode for workload orchestration

 Intra-channel reuse for depth-wise conv layers’ hardware utilization

 Dedicated support for activation partition and cross layer processing



EyeCoD Accelerator: Design Challenge 1

 Challenge: How to fully exploit the potential of EyeCoD algorithm?

 Design challenges and considerations
 Workload orchestration

 ✘ Time-multiplexing mode
 ✘ Concurrent mode

Illustrating Time-multiplexing Mode

High reuse opportunity

Peak resource usage for ROI prediction

Illustrating Concurrent Mode

Amortizing ROI prediction workload

Low reuse opportunity



EyeCoD Accelerator: Design Challenge 1

 Challenge: How to fully exploit the potential of EyeCoD algorithm?

 Design challenges and considerations
 Workload orchestration

 ✘ Time-multiplexing mode
 ✘ Concurrent mode

Illustrating Time-multiplexing Mode

High reuse opportunity

Peak resources usage for ROI prediction

Illustrating Concurrent Mode

Amortizing ROI prediction workload

Low reuse opportunity

 Can we marry the best of both modes?



EyeCoD Accelerator: Design Challenge 2

 Challenge: How to fully exploit the potential of EyeCoD algorithm?

 Design challenges and considerations
 Workload orchestration
 Depthwise conv layers (DW): Reduced mode size yet low utilization

 ✔ 7.9% FLOPs of the whole workload
 ✘ yet 34% overall processing time

Generic/Point-wise Conv Layer

Weight

Input Act Output Act

= =

Weight

Input Act Output Act

Depth-wise Conv Layer (DW)



EyeCoD Accelerator: Design Challenge 2

 Challenge: How to fully exploit the potential of EyeCoD algorithm?

 Design challenges and considerations
 Workload orchestration
 Depthwise conv layers (DW): Reduced mode size yet low utilization

 ✔ 7.9% FLOPs of the whole workload
 ✘ yet 34% overall processing time

 Can we improve the input activation reuses  high MAC utilization?
Generic/Point-wise Conv Layer

Weight

Input Act Output Act

= =

Weight

Input Act Output Act

Depth-wise Conv Layer (DW)



EyeCoD Accelerator: Design Challenge 3

 Challenge: How to fully exploit the potential of EyeCoD algorithm?

 Design challenges and considerations
 Workload orchestration
 Depthwise conv layers (DW): Reduced mode size yet low utilization
 Dedicated support for activation partition and cross layer processing



EyeCoD Accelerator: Feature 1

 Design challenges and considerations
 Our proposed EyeCoD accelerator features:
 Partial time-multiplexing mode for workload orchestration
 Observation: Fluctuated utilization for gaze estimation

Visualizing the temporal MAC utilization of the gaze estimation
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 Design challenges and considerations
 Our proposed EyeCoD accelerator features:
 Partial time-multiplexing mode for workload orchestration
 Observation: The utilization for gaze estimation fluctuate
 Proposed: Amortize ROI prediction workload to underutilized MACs

Gaze estimation only Concurrent ROI prediction 
and gaze estimation

Amortize ROI prediction workload

Higher reuse opportunity



EyeCoD Accelerator: Feature 1

 Design challenges and considerations
 Our proposed EyeCoD accelerator features:
 Partial time-multiplexing mode for workload orchestration
 Observation: The utilization for gaze estimation fluctuate
 Proposed: Amortize ROI prediction workload to underutilized MACs

Gaze estimation only Concurrent ROI prediction 
and gaze estimation

Amortize ROI prediction workload 
→ 2.31× speed up over the time-multiplexing mode
Higher reuse opportunity 
→ 1.6× higher energy efficiency over the concurrent mode



EyeCoD Accelerator: Feature 2

 Design challenges and considerations
 Our proposed EyeCoD accelerator features:
 Partial time-multiplexing mode for workload orchestration
 Intra-channel reuse for boosting depth-wise conv layers’ ultilization
 Column-wise intra-channel reuse → 3× utilizaiotn
 Deeper row-wise intra-channel reuse → 2× utilization

Weight Input Act Output Act

Deeper row-wise 
Intra-channel Reuses

Mapping on 
MAC Lanes

Weight Input Act Output ActMapping on 
MAC Lanes

Column-wise 
Intra-channel Reuses



EyeCoD Accelerator: Feature 3

 Design challenges and considerations
 Our proposed EyeCoD accelerator features:
 Partial time-multiplexing mode for workload orchestration
 Intra-channel reuse for boosting depth-wise conv layers’ utilization
 Dedicated support for activation partition and cross layer processing

 Support versatile operations: 
 Partition operation
 Concatenation operation
 Up/Down-sampling operation

Proposed Activation Memory 
Storage Layout (i.e., Address) (An 
Example for a 6×6×24 Act Tensor)
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 Design challenges and considerations
 Our proposed EyeCoD accelerator features:
 Partial time-multiplexing mode for workload orchestration 
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 Support versatile operations: 
 Partition operation
 Concatenation operation
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Proposed Activation Memory 
Storage Layout (i.e., Address) (An 
Example for a 6×6×24 Act Tensor)



EyeCoD Accelerator: Feature 3

 Design challenges and considerations
 Our proposed EyeCoD accelerator features:
 Partial time-multiplexing mode for workload orchestration 
 Intra-channel reuse for depth-wise convolution layers
 Dedicated support for activation partition and cross layer processing

Sequential-
write

Parallel-
read

Proposed Sequential-write-parallel-read Activation 
Buffer for 2× Higher Activation Bandwidth



EyeCoD Accelerator: Feature 3

 Design challenges and considerations
 Our proposed EyeCoD accelerator features:
 Partial time-multiplexing mode for workload orchestration 
 Intra-channel reuse for depth-wise convolution layers
 Dedicated support for activation partition and cross layer processing

Sequential-
write

Parallel-
read

Proposed Sequential-write-parallel-read Activation 
Buffer for 2× Higher Activation Bandwidth



Evaluation Setup and Baselines

 Evaluation Setup
 Considered Models: 

 RITNet for eye segmentation
 FBNet-C100 for gaze estimation

 Eye Tracking Datasets: 
 OpenEDS 2019 for eye segmentation
 OpenEDS 2020 for gaze estimation

 Evaluation Metrics: 
 Gaze estimation accuracy
 Model FLOPs, and task throughput and energy efficiency

 Benchmark Baselines:
 EdgeCPU (Raspberry Pi) and CPU (AMD EPYC 7742)
 EdgeGPU (Nvidia Jetson TX2) and GPU (Nvidia 2080Ti)
 Prior eye tracking accelerator:  CIS-GEP [8]

[8] K. Bong, et. al., JSSC’16



Evaluation Setup and Baselines

 Evaluation Setup
 Benchmark Baselines:

 EdgeCPU (Raspberry Pi) and CPU (AMD EPYC 7742)
 EdgeGPU (Nvidia Jetson TX2) and GPU (Nvidia 2080Ti)
 Eye tracking processor: CIS-GEP [8]

[8] K. Bong, et. al., JSSC’16



Evaluation Setup and Baselines

 Evaluation Setup
 EyeCoD AI Chip and Configurations:

 Silicon prototype: 

 Accelerator configurations: 



Evaluation: EyeCoD over SOTA Accelerators

 EyeCoD over CPU/GPU platforms: 
 EyeCoD achieves up to 2966x, 12.7x, 14.8x, and 2.61x throughput 

improvements over EdgeCPU, CPU, EdgeGPU, and GPU

 EyeCoD over SOTA eye tracking accelerators: 
 EyeCoD achieves on average 12.8x throughput improvement and 8.1x

higher energy efficiency over CIS-GEP, respectively.



Evaluation of EyeCoD Algorithm Pipeline

 ROI prediction based on eye segmentation model
 EyeCoD achieves up to 16x FLOPs reduction over the SOTA RITNet with 

a comparable (~93%) mIOU on FlatCam captured images

 Validate the effectiveness of EyeCoD’s ROI prediction



Evaluation of EyeCoD Algorithm Pipeline

 Gaze estimation on top of the predicted ROIs
 EyeCod with FBNet-C100 (8-bit) achieves 0.04 error reduction while 

reducing 78.2% FLOPs, compared with the award winner using ResNet18

 Validate the effectiveness of EyeCoD algorithm pipeline



Evaluation of Our EyeCoD Accelerator

 Overall throughput or energy efficiency improvements: 
 EyeCoD achieves 4x over lens-based eye tracking system

 Breakdown analysis: 
 P.F. leads to 1.99x improvements, Input., Partial., and Depth. further 

offers 1.22x, 1.28x, and 1.29x improvements, respectively.

 * : Using time-multiplexing mode
 P.F. : EyeCoD w/ predict-then-focus pipeline
 Input. : Sequential-write-parallel-read input activation buffer design
 Partial. : Partial time-multiplexing workload orchestration
 Depth. : Intra-channel reuse for depth-wise layers



Summary

EyeCoD integrates system-, algorithm-, and accelerator-level 
innovations: 

 The first FlatCam based algorithm & accelerator co-design 
framework for eye tracking that can simultaneously 
meet all three requirements for next-generation AR/VR devices

 On the algorithm level, EyeCoD integrates a predict-then-focus 
pipeline to largely reduce the computational cost without 
compromising the task accuracy;

 On the hardware level, EyeCoD further develops a dedicated 
accelerator attached to FlatCams for accelerating both 
computations and data movements.

Acknowledge: NSF RTML & EPCN programs



Demonstration






ShiftAddNAS: Hardware-Inspired Search 
for More Accurate and Efficient Neural Networks

Haoran You, Baopu Li, Huihong Shi, Yonggan Fu, Yingyan Lin

ICML 2022

NASA: Neural Architecture Search and Acceleration
for Hardware Inspired Hybrid Networks

Huihong Shi, Haoran You, Yang Zhao, Zhongfeng Wang, Yingyan Lin

ICCAD 2022



ShiftAddNAS: Background and Motivation
 Two branches of SOTA DNN design: Trade off accuracy and efficiency
 Multiplication-based DNNs, e.g., CNNs, Transformers

 Achieve unprecedented task accuracy
 Power hungry  Challenge their deployment to edge devices

Ac
cu

ra
cy

Efficiency



ShiftAddNAS: Background and Motivation
 Two branches of SOTA DNN design: Trade off accuracy and efficiency
 Multiplication-based DNNs, e.g., CNNs, Transformers

 Achieve unprecedented task accuracy
 Power hungry  Challenge their deployment to edge devices

 Multiplication-free DNNs, e.g., ShiftNet, AdderNet, ShiftAddNet
 Efficient and favor their deployment to edge devices
 Under-perform their multiplication-based counterparts in terms of task accuracy
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ShiftAddNAS: Background and Motivation

 Motivation of ShiftAddNAS
 Enable automated search for hybrid network architecture to marry the best of both worlds

 Multiplication-based operators (e.g., Conv & Attention)  High accuracy
 Multiplication-free operators (e.g., Shift & Add)  High efficiency
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Powerful DNNs

Efficient DNNs
Our goal



ShiftAddNAS: Tackled Challenges

 Motivation of ShiftAddNAS
 Enable automated search for hybrid network architecture to marry the best of both worlds

 Multiplication-based operators (e.g., Conv & Attention)  High accuracy
 Multiplication-free operators (e.g., Shift & Add)  High efficiency

 Associated Challenges
 How to construct an effective hybrid search space? 
 More operators  larger SuperNets, but SOTA weight sharing strategy is not applicable



ShiftAddNAS: Our Contributions

For the first time, we

 Develop ShiftAddNAS, featuring a hybrid search space that incorporates both 
multiplication-based and multiplication-free operators

 Propose a new heterogeneous weight sharing strategy that enables automated search 
for hybrid operators with heterogeneous weight distributions

 Conduct extensive experiments on both CV and NLP tasks to validate the effectiveness 
of our proposed ShiftAddNAS framework



Contribution 1: Hybrid Search Space and SuperNet

 Search space for NLP tasks
 Seven different blocks

 Attn, Conv, Shift,  and Add
 Attn+Conv, Attn+Add, and Attn+Shift

 Elastic dimensions for MLPs, embeddings, and heads

Encoder block types [Attn, Attn+Conv, Attn+Shift]
[Attn+Add, Conv, Shift, Add]

Decoder block types [Attn, Attn+Conv]
[Attn+Shift, Attn+Add]

Num. of decoder blocks [6, 5, 4, 3, 2, 1]
Elastic embed. Dim. [1024, 768, 512]
Elastic head number [16, 8, 4]
Elastic MLP dim. [4096, 3072, 2048, 1024]
Arbitrary Attn [3, 2, 1]

The Search Space for NLP Tasks



Contribution 1: Hybrid Search Space and SuperNet

 Search space for NLP tasks
 Seven different blocks

 Attn, Conv, Shift,  and Add
 Attn+Conv, Attn+Add, and Attn+Shift

 Elastic dimensions for MLPs, embeddings, and heads



Contribution 1: Hybrid Search Space and SuperNet

 Search space for NLP tasks
 Search space for CV tasks

 Multi-resolution
 Various spatial resolutions or scales are essential for CV tasks

Block types [Attn, Conv, Shift, Add]
Num. of 562 × 128 blocks [1, 2, 3, 4]
Num. of 282 × 256 blocks [1, 2, 3, 4]
Num. of 142 × 512 blocks [3, 4, 5, 6, 7]
Num. of 72 × 1024 blocks [4, 5, 6, 7, 8, 9]

The Search Space for CV Tasks



Contribution 1: Hybrid Search Space and SuperNet

 Search space for NLP tasks
 Search space for CV tasks

 Multi-resolution
 Various spatial resolutions or scales are essential for CV tasks



Contribution 2: Heterogenous Weight Sharing Strategy

 One-shot NAS with heterogeneous weight sharing
 Weight sharing among Conv, Add, and Shift blocks



NASA: Dedicated Accelerator for Hybrid Networks

 Micro-architecture
 Multi-chunk design with customized PEs  Support heterogeneous layers
 Four-level memory hierarchy  Enhance data locality

Micro-Architecture



NASA:PE Allocation Strategy

 Challenge 1
 How to partition and then allocate limited hardware resources to multiple chunks?

 Proposed PE allocation strategy
 Balance the throughput of multiple chunks Minimize the overall latency 
 Formally, allocated PEs in chunks are proportional to the corresponding operations under the 

area budget

𝑁𝑁𝐶𝐶
𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

=
𝑁𝑁𝑆𝑆

𝑂𝑂𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
=

𝑁𝑁𝐴𝐴
𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

,

𝑠𝑠. 𝑡𝑡.𝐴𝐴𝐶𝐶 + 𝐴𝐴𝑆𝑆 + 𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑡𝑡𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑡𝑡.



NASA: Auto-Mapper

 Challenge 2
 Our bigger design space  Nontrivial to manually identify the optimal dataflow

 Proposed Auto-Mapper
 Enable automated search for the optimal dataflow 
 Nested for-loop description:
 Loop ordering factors:  Determine the data reuse patterns
 Loop tiling factors:  Determine how to store data within each memory hierarchy



ShiftAddNAS: Experimental Setting

 NLP tasks
 Two datasets

 WMT’14 English to French (En-Fr)
 WMT’14 English to German (En-De)

 Five evaluation metrics
 BLEU score
 Number of parameters/FLOPs
 Hardware energy and latency

 Four baselines
 Transformer
 Lightweight Conv
 Lite Transformer
 HAT

 CV tasks
 One dataset: ImageNet

 Five evaluation metrics
 Accuracy
 Number of parameters/MACs
 Hardware energy and latency

 Four categories of baselines
 Multiplication-free NNs

 AdderNet, DeepShift, BNN

 CNNs
 ResNet, SENet

 Transformer
 ViT, DeiT, VITAS, Autoformer

 CNN-Transformer
 BoT, HR-NAS, BossNAS



ShiftAddNAS: Experimental Results for NLP Tasks

 Overall Improvement on NLP
 ShiftAddNAS achieves up to +2 

BLEU scores improvement and 
69.1% and 69.2% energy and 
latency savings



ShiftAddNAS: Experimental Results for CV Tasks

 Overall Improvement on CV
 ShiftAddNAS on average 

offers a +0.8% ~ +7.7% higher 
accuracy and 24% ~ 93% 
energy savings



Summary

For the first time, we

 Develop ShiftAddNAS, featuring a hybrid search space that incorporates both 
multiplication-based and multiplication-free operators

 Propose a new heterogeneous weight sharing strategy that enables automated 
search for hybrid operators with heterogeneous weight distributions

 Conduct extensive experiments on both CV and NLP tasks to validate the 
effectiveness of our proposed ShiftAddNAS framework

Open-source Code: 
https://github.com/RICE-EIC/ShiftAddNAS



Q & A

Thank you for your listening!
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