
EyeCoD: Eye Tracking System Acceleration via FlatCam-based
Algorithm & Accelerator Co-Design

Haoran You1∗ Cheng Wan1∗ Yang Zhao1∗ Zhongzhi Yu1∗ Yonggan Fu1 Jiayi Yuan1
Shang Wu1 Shunyao Zhang1 Yongan Zhang1 Chaojian Li1 Vivek Boominathan1

Ashok Veeraraghavan1 Ziyun Li2 Yingyan Lin1
1Rice University 2Meta Reality Labs

{hy34, chwan, zy34, zy42, yf22, jy101, sw99, sz74, yz87, cl114, vivekb, vashok, yingyan.lin}@rice.edu
liziyun@fb.com

ABSTRACT
Eye tracking has become an essential human-machine interac-

tion modality for providing immersive experience in numerous
virtual and augmented reality (VR/AR) applications desiring high
throughput (e.g., 240 FPS), small-form, and enhanced visual pri-
vacy. However, existing eye tracking systems are still limited by
their: (1) large form-factor largely due to the adopted bulky lens-
based cameras; (2) high communication cost required between the
camera and backend processor; and (3) potentially concerned low
visual privacy, thus prohibiting their more extensive applications.
To this end, we propose, develop, and validate a lensless FlatCam-
based eye tracking algorithm and accelerator co-design framework
dubbed EyeCoD to enable eye tracking systems with a much re-
duced form-factor and boosted system efficiency without sacrific-
ing the tracking accuracy, paving the way for next-generation eye
tracking solutions. On the system level, we advocate the use of
lensless FlatCams instead of lens-based cameras to facilitate the
small form-factor need in mobile eye tracking systems, which also
leaves rooms for a dedicated sensing-processor co-design to reduce
the required camera-processor communication latency. On the
algorithm level, EyeCoD integrates a predict-then-focus pipeline
that first predicts the region-of-interest (ROI) via segmentation
and then only focuses on the ROI parts to estimate gaze directions,
greatly reducing redundant computations and data movements.
On the hardware level, we further develop a dedicated acceler-
ator that (1) integrates a novel workload orchestration between
the aforementioned segmentation and gaze estimation models, (2)
leverages intra-channel reuse opportunities for depth-wise layers,
(3) utilizes input feature-wise partition to save activation memory
size, and (4) develops a sequential-write-parallel-read input buffer
to alleviate the bandwidth requirement for the activation global
buffer. On-silicon measurement and extensive experiments validate
that our EyeCoD consistently reduces both the communication

∗These authors are co-first authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISCA ’22, June 18–22, 2022, New York City, NY
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-8610-4/22/06. . . $15.00
https://doi.org/10.1145/3470496.3527443

and computation costs, leading to an overall system speedup of
10.95×, 3.21×, and 12.85× over general computing platforms includ-
ing CPUs and GPUs, and a prior-art eye tracking processor called
CIS-GEP, respectively, while maintaining the tracking accuracy.
Codes are available at https://github.com/RICE-EIC/EyeCoD.

CCS CONCEPTS
• Computer systems organization→ Real-time systems; Ar-
chitectures; • Hardware → Emerging technologies.

KEYWORDS
Eye Tracking Systems, VR/AR, Algorithm-hardware Co-Design

ACM Reference Format:
Haoran You, Cheng Wan, Yang Zhao, Zhongzhi Yu, Yonggan Fu, Jiayi Yuan,
Shang Wu, Shunyao Zhang, Yongan Zhang, Chaojian Li, Vivek Boomi-
nathan, Ashok Veeraraghavan, Ziyun Li, Yingyan Lin. 2022. EyeCoD: Eye
Tracking System Acceleration via FlatCam-based Algorithm & Accelera-
tor Co-Design. In Proceedings of The 49th Annual International Symposium
on Computer Architecture (ISCA ’22). ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3470496.3527443

1 INTRODUCTION
Eye tracking has emerged as a increasingly crucial component

for various applications that require human-machine interactions,
e.g., virtual and augmented reality (VR/AR) devices [32, 44, 46]. For
example, Foveated Rendering (FR) [25] is one of the core technolo-
gies that enables immersive user experiences in VR/AR applications
requiring high-performance eye tracking. In particular, FR renders
a high-resolution picture only in locations where users are looking
at and a low-resolution one for the remaining background. Despite
their promise, existing eye tracking systems such as [5] are still
limited in their achievable throughput (e.g., still < 30 FPS) and thus
cannot fully satisfy the desired real time performance requirements,
e.g., > 240 FPS for supporting frequent and substantial human-
machine interactions in mobile AR/VR devices of limited computing
resources [1, 32]. The bottlenecks are three-fold: First, on the sys-
tem level, previous eye tracking systems rely on lens-based cameras
that have a large form-factor especially thickness and thus can only
be placed far away from the backend processor, resulting in a high
communication cost between the camera and processor and thus
limiting the overall system latency; Second, on the data level, the
captured images often contain a significant amount of redundancy
as only a small portion of the images contains human eyes; Third,

https://doi.org/10.1145/3470496.3527443
https://github.com/RICE-EIC/EyeCoD
https://doi.org/10.1145/3470496.3527443

ISCA ’22, June 18–22, 2022, New York City, NY You et al.

on the model level, current state-of-the-art award-winning solu-
tions for both eye segmentation (e.g., OpenEDS2019 [21]) and gaze
estimation (e.g., OpenEDS2020 [35]) require deep neural networks
(DNNs) with paramount (e.g., up to 16G) FLOPs.

The above bottleneck analysis of existing eye tracking solutions
has uniquely motivated our system design. Specifically, for allevi-
ating the aforementioned system-level inefficiency, lensless cam-
eras [4, 18, 26] have emerged as promising solutions. For example,
FlatCam [4] can be 5× ∼ 10× thinner and lighter than lens-based
cameras by replacing the focal lenses with a coded binary mask,
which encodes the incoming light instead of directly focusing it. The
encoded information of FlatCam’s sensing measurements can be
computationally decoded to reconstruct the captured images with
potentially introduced artifacts and noises during the mask fabrica-
tion and measurement processes. Furthermore, the reduced form-
factor especially thickness leaves room for attaching the backend
eye tracking processor to be closer to the front-end cameras, largely
reducing the distance between the camera and processor and thus
corresponding communication costs for reducing the overall sys-
tem latency of eye tracking. For tackling the data-level inefficiency,
identifying the core eye area in the captured images can potentially
reduce both a large amount of computational costs in the required
gaze estimation model and corresponding data storage/movement
costs of the eye tracking processor. For the model-level inefficiency,
a thorough algorithm and corresponding hardware accelerator de-
sign space exploration is crucial for largely improving the hardware
utilization of eye tracking acceleration.

Motivated by the aforementioned bottleneck analysis and new
opportunities, we advocate lensless camera based eye tracking
systems for (1) alleviating the bottlenecks in existing eye tracking
systems and (2) leveraging the aforementioned opportunities to
largely enhance the achievable throughput of eye tracking systems,
and make the following contributions:

• We propose a lensless FlatCam-based eye tracking algorithm
and accelerator co-design framework dubbed EyeCoD, which
aims to leverage FlatCam’s much reduced form-factor to de-
sign a real-time eye tracking system (i.e., > 240 FPS) by har-
monizing both algorithm- and accelerator-level innovations.
Specifically, EyeCoD (1) explores the possibility of replacing
lens-based cameras with lensless cameras featuring a thinner
and lighter form-factor, yet without degrading the tracking
accuracy, and (2) further accelerates both eye tracking com-
putations and data movements with a dedicated accelerator
attached to the lensless camera to largely reduce the overall
system latency.

• On the algorithm level, EyeCoD integrates (1) a sensing-
processing interface that directly encodes the first layer of
eye tracking models to FlatCam’s mask, and (2) a predict-
then-focus pipeline that first predicts the region-of-interest
(ROI) based on eye semantic segmentation and then only fo-
cuses on the ROI parts to estimate the gaze directions, largely
reducing the redundant computations and data movements.

• On the hardware level, EyeCoD further develops a dedicated
accelerator that can be directly attached to FlatCam for ac-
celerating eye tracking computations and data movements,

by (1) enhancing data locality via dedicated workload or-
chestration between the eye segmentation (predict) and gaze
estimation (focus) models; (2) exploring the reuse oppor-
tunity for depth-wise layers; and (3) leveraging activation
partition and memory access parallelism to save on-chip
storage and off-chip bandwidth, respectively.

• On-silicon measurements and extensive experiments vali-
date the effectiveness of our proposed EyeCoD framework.
Specifically, EyeCoD leads to 10.95×, 3.21×, and 12.85× over-
all system speedups over general computing platforms in-
cluding CPUs and GPUs, and the prior-art eye tracking pro-
cessor called CIS-GEP [5], respectively, while maintaining
the tracking accuracy.

2 RELATEDWORKS
Eye Tracking Algorithms. Existing eye tracking algorithms in-

clude both model- and appearance-based methods. The former [41,
42] builds a geometric model for eyes to predict the corresponding
gaze, including both 2D and 3D models that use near infrared (NIR)
illumination to create corneal reflections to estimate the gaze vec-
tor. The latter [40] directly maps the raw pixels to the gaze angles.
Appearance-based methods in general have surpassed model-based
ones for eye tracking, especially when being equipped with ad-
vanced deep learning methods. Different DNN structures have been
proposed to enhance the performance of gaze estimation. For exam-
ple, [45] proposed the first DNN model for gaze estimation and [36]
further proposed a hybrid network integrating both hourglass [34]
and DenseNet [24] to leverage auxiliary supervision based on the
gaze-map; [13] introduced ARE-Net, which consists of two smaller
modules to first find directions from each eye individually and then
estimate the reliability of each eye, respectively; [15] also defined
two convolutional neural networks (CNNs) to predict head and
gaze angles, respectively. In parallel, different processing pipelines
have been developed with diverse focuses on the input features.
For example, [45] utilized minimal context by only using grayscale
eye images and head poses as inputs; [28] developed a multi-model
CNN to extract information from two single eye images, including
face image and face grid, for aiding the following gaze estimation;
and [19] built an ensemble on top of the features extracted by two
eye patches and head pose vectors, and achieved superior perfor-
mance on several datasets [19, 39].

Lensless FlatCam. As traditional lens-based cameras inevitably
require a certain focal length, which prohibits their applications
to edge devices with stringent requirements on the form-factor,
various lens-less imaging systems have been developed to alleviate
the size or thickness bottleneck caused by the lens by capturing an
image of a scene without physically focusing the incoming light.
Generally, lensless imaging systems capture the scene either di-
rectly on the sensor or after being modulated by a mask element.
In the latter cases, commonly adopted masks include phase masks
[7, 38], diffusers [2], amplitude masks [4, 37], compressive samplers
[23], and spatial light modulators [14, 16]. Since directly replacing
lens with the aforementioned masks will lead to muddled sensor
captures without any resemblance to the scene, either a recovery
process is required to transform the captured information to recog-
nizable images or some dedicated functions are adopted to achieve

EyeCoD: Eye Tracking System Acceleration via FlatCam-based Algorithm & Accelerator Co-Design ISCA ’22, June 18–22, 2022, New York City, NY

Eye Tracking
Camera

Hot MirrorsLenses
Sensor

Computational
Reconstructed

Eye Image
Mask

Sensor
Measurement

EyeVR / AR Diagram

Down
Sampling

RITNet
Model

Eye Segmentation (Predict)

FlatCam

(c) EyeCoD Accelerator

MAC Lane

On Chip
Memory

In. Act.

Weight

Out. Act.

(b) EyeCoD Predict-then-focus Algorithm Pipeline

(a) Lensless FlatCam Workflow

< 2 mm

Deep Neural
Network

Augment
Eye Area

Gaze Estimation (Focus)

Semantic
Segmentation

Region of
InterestGaze Normal Gaze Estimation

MAC Lane

MAC Lane Co-Design
Gaze

Direction

Figure 1: Overview of EyeCoD, an algorithm and accelerator co-design framework for end-to-end eye tracking acceleration.

end-to-end system goals without reconstructing corresponding
recognizable images. From the privacy perspective, the captured
unrecognizable images can better maintain the visual privacy com-
pared with lens-based cameras. In this work, we adopt a specific
lensless camera named FlatCam, which favors general uses and
generates phase masks with desired sharp point-spread-functions
(PSFs). In particular, phase masks in a FlatCam modulates the phase
of incident light according to the principles of wave optics, which
allow most of the light to pass through with a high signal-to-noise
ratio (SNR). Therefore, FlatCam systems are particularly desirable
for low light scenarios and photon-limited imaging, which is very
suitable for eye tracking applications on VR/AR devices where
human eyes are underexposed.

Eye Tracking Accelerators and DNN Accelerators. Various
eye tracking systems with high energy-/latency-efficiency have
been proposed for empowering the next-generation VR/AR devices.
They are either built on top of commercial devices or supported
by customized accelerators. For the former case, [8] presented an
accurate infrared eye tracking system on a smartphone equipped
with an infrared camera and illumination. For the latter case, [6]
developed a CMOS image sensor based gaze estimation proces-
sor to reduce power consumption and [22] proposed a low-power
single-chip gaze estimation sensor equipped with a novel column-
parallel pupil edge detection circuit for supporting their proposed
pupil edge detection algorithm, which can achieve a 2.9× power
consumption reduction. A recent work [33] designed the first 3D
model-based gaze estimator hardware that consumes less than 1mW
power and achieves latency of 1ms per frame. In parallel, driven
by the success of DNNs in the eye tracking field, there has been an
increasing interest in accelerating DNN-based eye tracking systems
with customized DNN accelerators [12, 17, 29, 47]. In particular,
DNN accelerators have achieved impressive progress and often
adopt a carefully designed memory hierarchy and PE arrays to max-
imize data-reuse opportunities and to enhance parallel processing

via dedicated micro-architectures and algorithm-to-hardware map-
ping methods (i.e., dataflows). For example, representative works,
such as ShiDiannao [17] and Eyeriss [12], identified the perfor-
mance bottleneck caused by the required massive data movements
and proposed novel architectures and dataflows that aim to max-
imize data reuses for reducing the energy/time cost of accessing
higher cost memories.

3 EYECOD: MOTIVATION AND OVERVIEW
3.1 Why Existing Eye Tracking Solutions Are

Still Inefficient
Eye tracking is known to be a core function for enabling high-

quality immersive VR/AR experiences, and requires stringent re-
quirements in terms of both real-time latency and high accuracy
for gaze estimation [35]. In general, there still exists a dilemma
for designing eye tracking systems: On one hand, the end-to-end
system latency needs to meet real-time performance, which de-
sires compact end-to-end processing models/pipelines which can
inevitably degrade the achieved tracking accuracy; On the other
hand, adopting more complex processing models/pipelines favor
the achievable tracking accuracy but can lead to a large system
latency of performing eye tracking. For example, a state-of-the-art
ASIC eye tracking processor [5] implemented in an 65nm CMOS
technology can only achieve a throughput of 30 FPS, limiting their
more extensive applications [1, 31, 32].

To better understand the challenges associated with accelerat-
ing eye tracking systems, we analyze the bottlenecks from three
levels of granularity: (1) On the system level, current lens-based
eye tracking camera requires a large form-factor, contradicting the
desired small form-factor for mobile VR/AR applications with a
head-mounted display (HMD), and thus the camera often locates far
away from the central processor, resulting in a high communication
cost between the camera and backend processor and thus limiting
the achievable end-to-end latency [1, 11]; (2) On the data level,

ISCA ’22, June 18–22, 2022, New York City, NY You et al.

Sensor

10 ~ 20 mm

Lens
(8~15g)

Lens-based Camera

10x
smaller

Sensor

Mask
(0.5g)

Comp.

Recon.

FlatCam
< 2 mm

Figure 2: An illustrative comparison between lens-based cam-
eras (left) and lensless FlatCam (right), where Comp. and
Recon. denote computation and reconstruction, respectively.

there remains a nontrivial amount of redundancy in the captured
images, as only a small portion of which represents human eyes,
and thus corresponding redundant acceleration costs. (3) On the
model level, current state-of-the-art award-winning solutions for
both eye segmentation (e.g., OpenEDS2019 [21]) and gaze estima-
tion (e.g., OpenEDS2020 [35]) require DNNs with paramount (up to
16G) FLOPs. The above analysis regarding the inefficiency and bot-
tleneck of existing eye tracking solutions has uniquely motivated
our target dedicated algorithm and accelerator co-design frame-
work for achieving both the real-time processing (e.g., > 240FPS
[32]) and the competitive tracking accuracy.

3.2 Why EyeCoDWorks and Overview
Fig. 1 shows an overview of the proposed EyeCoD framework,

which integrates techniques from various system granularities ded-
icated to tackle the aforementioned three bottlenecks and thus can
largely alleviate the dilemma between the achievable eye tracking
efficiency and accuracy. On the system level, we advocate the use
of lensless FlatCams instead of lens-based cameras to facilitate the
small form-factor needed inmobile eye tracking systems, which also
leaves rooms for a dedicated sensing-processor co-design to reduce
the required camera-processor communication latency. On the al-
gorithm level, we leverage a predict-then-focus processing pipeline
to first identify regions of interest (ROI) via periodic segmentation
and then estimate the gaze direction only based on the extracted
ROI, eliminating redundant data regions and corresponding algo-
rithmic processing and data movements. Meanwhile, we explore
eye tracking model design spaces and compression techniques on
top of award-winning SOTA designs [21, 35] to additionally reduce
algorithmic redundancy and corresponding acceleration cost. Fi-
nally, we develop a dedicated accelerator to leverage the resulting
properties from EyeCoD’s system and algorithm level optimization,
further improving the overall system efficiency.

4 PROPOSED EYECOD’S SENSING AND
PROCESSING PIPELINE

In this section, we present our EyeCoD’s sensing and processing
pipeline. Specifically, we first present (1) the preliminaries of lens-
less FlatCams in Sec. 4.1, (2) EyeCoD’s sensing-processing interface
in Sec. 4.2, and (3) EyeCoD’s predict-then-focus processing pipeline
and its model compression consideration in Sec. 4.3.

4.1 Preliminary of Lensless FlatCams
Replacing Lens With a Lensless Coded Mask. Our EyeCoD

advocates replacing the commonly adopted lens-based cameras in
eye tracking systems with lensless cameras featuring both smaller
thickness and weights (see Fig. 2), in order to reduce (1) the camera-
processor distance and (2) communication data volume (i.e., com-
municating intermediate features with smaller sizes instead of raw
images with larger sizes) between the camera and processor, both
leading to reduced communication cost between the camera and
backend processor for eye tracking. In particular, while EyeCoD
can potentially adopts various lensless cameras, in this work we
consider FlatCam [3] which replaces the bulky lens in lens-based
cameras with a carefully designed thin mask placed on top of the
conventional sensor array. During imaging, the incident light is
first encoded by the mask and each pixel in the sensor measurement
records a linear combination of light from multiple directions. The
imaging process can be formulated as follows:

𝑦 = Φ𝐿𝑥Φ
𝑇
𝑅 + 𝑒, (1)

where 𝑥 and 𝑦 are the input light and measurement, respectively,
and Φ𝐿 and Φ𝑅 are transfer matrices representing the coded masks
and 𝑒 captures the sensor noise. Replacing lens with thin masks
of FlatCams can reduce the form-factor by orders of magnitude
[3], making it naturally suitable for mobile eye tracking systems
(e.g., VR/AR devices), where there are stringent requirements on
the devices’ thickness and weight.

Image Reconstruction. As shown in Fig. 2, the sensing outputs
of FlatCams do not capture the target scene but its computational
combination that often does not convey readable information. To
facilitate the following gaze estimation, we first reconstruct the
scene image (i.e., captured eyes) by solving an inverse problem of
the imaging process with a L2 norm regularization to reduce the
noise during imaging, following [3]. Specifically, the optimization
goal of this image reconstruction can be formulated as:

argmin
𝑋

∥Φ𝐿𝑋Φ𝑇𝑅 − 𝑦∥22 + 𝜖 ∥𝑋 ∥22, (2)

where 𝜖 > 0 is a regularization parameter and we optimize the
reconstructed images 𝑋 by minimizing the above least-square ob-
jective function following [4] towards obtaining the optimally re-
constructed images 𝑋𝑟𝑒𝑐 .

Opportunities. From the aforementioned background regard-
ing FlatCam, we can see that as compared to eye tracking systems
with lens-based cameras, lensless camera based ones exhibit a great
potential in terms of smaller form-factor (e.g., 5× ∼ 10× thinner and
>10× lighter), reduced communication costs between camera sen-
sors and backend processors, and improved visual privacy, leading
to a reduced end-to-end system latency.

4.2 EyeCoD’s Sensing-processing Interface
To leverage the aforementioned opportunities offered by lensless

cameras, EyeCoD’s sensing-processing interface replaces both Flat-
Cam sensing and the first layer of the following eye tracking model
with direct optical edge filtering using FlatCam’s coded masks, sim-
ilar to [10, 20], i.e., the coded masks’ optical response emulates the
first layer of the following DNNs. Such a sensing-processing inter-
face offers two-fold benefits that are highly desirable for mobile

EyeCoD: Eye Tracking System Acceleration via FlatCam-based Algorithm & Accelerator Co-Design ISCA ’22, June 18–22, 2022, New York City, NY

Sensor
Measurement

ReconstructedImage Reconstruction

ROI Prediction
Segmentation
using RITNet

Detect
Crop Range

Gaze Estimation using FBNet

Gaze EstimationGaze Normal

Gaze
 Estimation

Stage 1:

Stage 2:

Stage 3:

Figure 3: An overview of the proposed predict-then-focus
processing pipeline.

eye tracking systems: (1) the enabled sensing-processing co-design
within the lensless cameras leads to FLOPs and acceleration cost
savings, thanks to the first-layer optical computation, and thus
requires a lower electronic power consumption [10], especially for
the UNet-like segmentation models [9] of which the first layer has
to process images of the highest resolution; and (2) embedding the
first-layer of the following eye tracking model into FlatCam’s coded
masks favors reduced sensing-processor communication volume,
since the intermediate sensor measurements now enjoy reduced
sizes/channels as compared to the raw images captured by lens-
based cameras.

4.3 EyeCoD’s Predict-then-focus Processing
Pipeline

Pipeline Overview. EyeCoD’s processing pipeline consists of
three stages as shown in Fig 3: (1) image reconstruction as described
in Sec. 4.1, (2) ROI prediction, which aims to predict the ROI cen-
tered around the human pupil in each reconstructed image, and
(3) gaze estimation, which estimates the gaze based on the ROI
derived from the previous stage. Our new contribution lies in the
intersection between the second and third stages, where we aim to
precisely predict and crop the most informative core eye area (i.e.,
pupil, iris, and sclera) to estimate the gaze with lower costs. Note
that the ROI prediction will only needed once for every 50 frames
leveraging the fact that the movement of eyes are much slower
than the movement of gaze directions [35], while the gaze estima-
tion will be continuously processed for each frame based on the
latest predicted ROI. Note that the costs of ROI prediction are amor-
tized across 50 frames, therefore, the dependent gaze estimation is
operating on an ROI extracted 50∼100 frames ago.

ROI Prediction. Not all pixels in each image are of the same
importance to the corresponding gaze estimation. Ideally, the ROI
should contain a small area with pupil, iris and sclera in the center

to provide sufficient information with the lowest resolution size
for estimating the gaze. However, in the captured image, skin con-
sumes a large portion of area, which have little information for
gaze estimation but consumes considerable costs during inference,
providing us with a promising source of redundancy.

To reduce computational overhead, we propose to predict the ROI
and then only estimate gaze based on the extracted ROI accordingly.
We first use a segmentation model to segment the core eye area,
of which the advantage is that it favors diverse downstream tasks
including gaze estimation and thus general uses. However, the
high noise in FlatCam reconstructed images (especially the sclera
part) makes it more challenging for the segmentation model to
precisely predict the whole core eye area than lens-based camera
captured images. To address this issue, directly using segmented
core eye areas as the feature for ROI prediction is likely to lead to an
inaccurate result, degrading the model accuracy of gaze estimation.

Luckily, we observe that pupils have a significantly different
feature than the other parts in the image, as the pupil is usually
a circle with a darker color than its surrounding. Therefore, the
segmentation model can correctly segment the pupil with a high
confidence. Furthermore, as pupils are normally located near the
center of human eyes, we propose to use the segmented pupil center
as an anchor for generating the ROI. Specifically, we predict the ROI
by cropping a rectangle patch centered around the pupils, where
the rectangle patch’s width and height are of 1.5× more than the
average width and height of the segmented sclera area to cover
core eye areas according to the statistics of the adopted training
dataset. The predicted ROI is then passed to the gaze estimation
model for generating the final eye tracking output, i.e., gaze vectors
represented in a 3D coordinate system.

5 PROPOSED EYECOD’S ACCELERATOR
This section introduces our EyeCoD’s accelerator design. In

Sec. 5.1, we first analyze the challenges brought about by EyeCoD’s
predict-then-focus processing pipeline to derive the design princi-
ples of the accelerator design for further minimizing the processing
latency and maximizing energy efficiency, and then describe the
proposed accelerator with dedicated optimizations in Sec. 5.2.

5.1 Design Challenges and Principles
Design Challenges.Asmentioned in Sec. 4.3, EyeCoD’s predict-

then-focus processing pipeline consists of two DNN models, i.e.,
a segmentation model for ROI prediction and a gaze estimation
model for predicting gazes (see Fig. 3), to collaboratively construct
an end-to-end eye tracking pipeline, aiming for both higher eye
tracking accuracy and model efficiency. This means that EyeCoD’s
accelerator is required to efficiently accelerate both of the above seg-
mentation and gaze estimation models that feature diverse model
structures as well as layer types and shapes. Hence, it brings about
four challenges for effective hardware acceleration to deliver the
desired eye tracking latency and efficiency towards practical de-
ployment on mobile devices with both constrained computation
and memory resources.

Challenge # I: Workload Orchestration between Segmen-
tation and Gaze Estimation. As introduced in Sec. 4.3, EyeCoD’s
predict-then-focus processing pipeline processes the segmentation

ISCA ’22, June 18–22, 2022, New York City, NY You et al.

Eye
Segmentation

Gaze
Estimation

Eye
Segmentation

Gaze
Estimation

(a) (b)

MACMAC

MACMACMAC MAC

MAC MAC

Figure 4: Two classical workload orchestration modes: (a) the
time-multiplexing mode and (b) the concurrent mode, for
accelerating both the eye segmentation and gaze estimation
models.

and gaze estimation models in parallel for reducing the overall
latency of eye tracking, where the gaze estimation model continu-
ously operates on every frame while the eye segmentation model
executes once out of every 𝑁 frames (𝑁 = 50 in our design to bal-
ance the achieved eye tracking accuracy and imposed latency and
energy costs (see Sec. 6.3)). As such, proper workload orchestration
should be considered in our hardware acceleration design.

Potentially, two classical workload orchestration modes, i.e.,
time-multiplexing and concurrent modes, as shown in Fig. 4, can
be adopted to orchestrate the eye segmentation and gaze estima-
tion models on the same accelerator. However, these two workload
orchestration modes either require a larger amount of computation
resources (i.e., the time-multiplexing mode) or less opportunities
for data reuses (i.e., the concurrent mode).

(1) Timing-multiplexing mode. When utilizing the time-multiple-
xing mode in Fig. 4 (a), only one of the two models’ layers occupies
the accelerator’s computation resources at a given time. As such, to
ensure the performance of accelerating the bottleneck layers (i.e.,
layers with the largest number of operations (FLOPs)) which domi-
nates the overall processing latency, adopting a time-multiplexing
mode demands a larger amount of acceleration resources than the
models’ theoretical requirement. For better understanding, we pro-
vide an analysis here. As our eye segmentation’s RITNet [9] and
gaze estimation’s FBNet-C100 [43] contain 140M and 1.06G FLOPs,
respectively, the theoretical computation resource requirement is
1024 multiplication-and-accumulations (MACs), if assuming the tar-
get eye tracking throughput is 240 FPS at a processing frequency of
350MHz. However, 256 additional MACs (i.e., corresponding to 25%
extra MACs if considering a theoretical requirement of 1024 MACs)
are required to maintain the target 240 FPS system latency, when
running the bottleneck layers (i.e., the third, fifth, forty-second, and
forty-forth layer) of the eye segmentation model [9] although the
eye segmentation model executes once out of every 50 frames.

(2) Concurrent mode. Considering a concurrent mode for Eye-
CoD’s predict-then-focus processing pipeline, an accelerator spa-
tially executes both the eye segmentation and gaze estimation mod-
els simultaneously in two fixed partitions of the accelerator’s MACs
as shown in Fig. 4 (b) for a given cycle. Different from the time-
multiplexing mode, the execution latency of bottleneck layers of
the segmentation model are amortized to every 50 frames and do
not dominate the overall processing latency. However, the concur-
rent mode brings about the drawback of less data reuse opportu-
nities, since each of the two partitions has a reduced amount of

Pa
ra

lle
l

M
ap

pi
ng

(a)
Input Act Output Act

(b)

Para
lle

l

Map
ping

Pa
ra

lle
l

M
ap

pi
ng

Weight

Input Act Output Act Weight

Para
lle

l

Map
ping

Para
lle

l

Map
ping

1

Figure 5: A computation illustration of (a) generic/point-wise
convolution and (b) depth-wise convolution layers.

computation resources as compared to using all resources with-
out partition (i.e., the time-multiplexing mode). Naturally, a good
partition scheme should balance the two models’ complexity and
execution frequency, which in our case will lead to only 4 MACs
out of 1024 MACs being assigned to EyeCoD’s eye segmentation
model and thus result in extremely less reuse opportunities and
poor efficiency.

Challenge # II: Support for Various Layer Types. EyeCoD’s
predict-then-focus processing pipeline consists of RITNet [9] for
eye segmentation and FBNet-C100 [43] for gaze estimation, that
include generic/point-wise/depth-wise convolution layers, fully-
connected (FC) layers, and matrix-matrix-multiplication layers. The
efficient processing of various layer types is a design challenge that
needs to be addressed. In the following discussion, we compare the
number of computation operations of different layer types to find
the dominant layer types; analyze the reuse opportunity among
various layer types; and show that depth-wise convolution layers
require specific optimization.

(1) Dominate layer type analysis. Considering a 50 frame pro-
cessing of EyeCoD’s predict-then-focus processing pipeline when
the eye segmentation is needed once, generic convolution, point-
wise convolution, depth-wise convolution, FC, and matrix-matrix
multiplication layers account for 8.8%, 68.8%, 7.9%, 0.001%, and
14.5% of the overall number of computation operations, respec-
tively. FC is not the dominant layer, since it only accounts for about
0.001% of the overall operations. Matrix-matrix multiplication, can
be treated as point-wise convolution layer with a large batch size
(i.e., > 1). Therefore, generic convolution, point-wise convolu-
tion, and depth-wise convolution are three dominant layer types in
EyeCoD’s predict-then-focus processing pipeline.

(2) Reuse opportunity analysis. Fig. 5 (a) and (b) illustrate the
computation of generic/point-wise convolution and depth-wise
convolution layers. There are two kinds of reuse opportunities
shared by all convolution layers: Psum reuse where the partial sums
(Psums) are accumulated to calculate the corresponding output
activation (Act) and intra-channel reuse where one input channel of

EyeCoD: Eye Tracking System Acceleration via FlatCam-based Algorithm & Accelerator Co-Design ISCA ’22, June 18–22, 2022, New York City, NY

Eye
Segmentation

Gaze
Estimation

MAC MAC

MAC MAC

Eye
Segmentation

Gaze
Estimation

MAC MAC

MAC MAC

(a) (b)

Figure 6: The proposed partial time-multiplexing mode for
the workload orchestration of the eye segmentation and gaze
estimation models: (a) the gaze estimation model occupies
the computation resources; and (b) the eye segmentation and
gaze estimation models run simultaneously.

weights are reused by the corresponding channel of input activa-
tions to get the Psums (generic/point-wise convolution layers) or
output activations (depth-wise convolution layers). Compared with
depth-wise layer, generic/point-wise layer has input reuse where
one input activation is reused by all 3D weight filters.

(3) Specific optimization requirement for depth-wise convolution
layer. Due to the limited reuse opportunities in depth-wise convolu-
tion layer, utilizing the same design for both generic/point-wise and
depth-wise convolution layers typically leads to a very low MAC
utilization or requires a much higher input activation memory band-
width (see Fig. 5). Our analytical analysis shows that all depth-wise
convolution layers account for only 7.9% of the overall number of
computation operations, but consume 33.6% of the overall process-
ing time if using the same design as the generic/point-wise layers.
Therefore, specific optimizations are necessary for the depth-wise
layer to fulfil the goal of real-time performance.

Challenge # III: Workload Partition to Save Activation
Memory Size. If using the vanilla layer-by-layer processing, the
theoretical on-chip activation memory size should fit the maximum
requirement of each layer, i.e., 2.78MB, where the eye segmentation
model and the gaze estimation model occupy 2.08MB and 0.70MB,
respectively. The 2.78MB on-chip memory size is unacceptable for
the eye tracking application; let alone we only count the activation
memory. Therefore, properworkload partition is required so that we
only need to allocate the activation memory size for the processing
of each individual partition.

Challenge # IV: High Activation Memory Bandwidth Re-
quirement. As discussed in Challenge # II, depth-wise convolution
layers require a higher activation bandwidth to achieve a satisfy-
ing MAC utilization (i.e., 32× ∼128× higher bandwidth than the
processing of processing generic/point-wise convolution layers for
>50% MAC utilization in our design). However, simply enlarging
activation bandwidth leads to the bandwidth waste when process-
ing other layers and increases the memory accesses cost. EyeCoD’s
accelerator design should be optimized to alleviate the stringent
requirement of activation memory bandwidth for a better trade-off
between depth-wise layers’ and other layers’ workloads.

Design Principles. Based on the above challenge analysis, we
propose the following principles to take full advantage of EyeCoD’s
predict-then-focus processing pipeline for developing and opti-
mizing the dedicated accelerator. In Sec. 5.2, we incorporate these
design principles in our EyeCoD accelerator design.

Time (us)

M
A

C
 U

til
iz

at
io

n
(%
） 100

90
80
70
60
50
40

0 15000 30000 45000 60000 75000 90000

Figure 7: An illustration of the MAC utilization when run-
ning the gaze estimation model.

Principle # I: Partial Time-multiplexing Mode for Work-
load Orchestration. As the time-multiplexing and concurrent
modes are not optimized for EyeCoD’s predict-then-focus process-
ing pipeline. Adopting them will result in either a larger amount of
computation resources or less reuse opportunities, we take advan-
tage of both two modes and propose a partial time-multiplexing
mode as shown in Fig. 6. In the proposed partial time-multiplexing
mode, the gaze estimation model can fully occupy the computa-
tion resources as shown in Fig. 6 (a); or we can run the eye seg-
mentation model and the gaze estimation model simultaneously
as shown in Fig. 6 (b). Thanks to the simultaneous processing of
both eye segmentation and estimation models (see Fig. 6 (b)), the
processing latency of the segmentation model’s bottleneck lay-
ers are amortized to every 50 frames as in the concurrent mode,
which tackles the large computation resource drawback in the time-
multiplexing mode. Our evaluation shows that the proposed partial
time-multiplexing mode has a 2.31× peak speedup than the time-
multiplexing mode with a 10% higher activation global buffer (GB)
bandwidth and no computation resource (i.e., MAC) overhead. In
addition, the partial time-multiplexing mode provides us the oppor-
tunity to better balance the reuse opportunities, the two models’
complexity, and the two models’ execution frequency to tackle the
less reuse opportunity drawback in the concurrent mode. In partic-
ular, when the gaze estimation model requires a large amount of
computation resources (i.e., generic/point-wise convolution layers),
it fully owns the computation resources as shown in Fig. 6 (a). On
the other hand, only when the gaze estimation consumes a smaller
amount of computation resources (i.e., depth-wise layers), we as-
sign the unused resources to the eye segmentation model to run
them simultaneously as shown in Fig. 6 (b). At the same time, the
eye segmentation model owns a larger amount of resources than
that in the concurrent mode to enable a high reusability.

Principle # II: Intra-channel Reuse for Depth-wise Layer.
As the depth-wise layer optimization is critical to speed up the
gaze estimation model, the usually-unexplored intra-channel input
reuse in generic/point-wise convolution layers need to be explored
for depth-wise layer for achieving a high MAC utilization with an
acceptable activation memory bandwidth and thus reducing the
overall processing time. Our evaluation shows that the proposed
intra-channel reuse optimizations can reduce the processing time
of depth-wise layers by 71%. The detail description of the proposed
intra-channel reuse optimizations is elaborated in Sec. 5.2. It should
be note that the intra-channel reuses are limited for the layers with

ISCA ’22, June 18–22, 2022, New York City, NY You et al.

Input Act Intermediate Act Output Act

H
ei

gh
t

Width

Chan
nel

Figure 8: An illustration of input feature-wise partition for
cross-layer processing.

a stride of 2 and the last several layers with smaller input activation
feature maps (e.g., 7/7 for the height/width of the input feature
maps) in the gaze estimation model. As such, further increasing
the MAC utilization of these layers is challenging. Thanks to the
proposed partial time-multiplexing mode for workload orchestra-
tion, we tackle the MAC utilization challenge of these layers by
running the segmentation model on the unused MACs. Fig. 7 shows
the MAC utilization when running gaze estimation model alone on
EyeCoD’s accelerator. When the utilization is less than 80% (i.e., the
red line in Fig. 7), we can run the eye segmentation model on the
unused resources in the proposed partial time-multiplexing mode
for a >90% overall MAC utilization.

Principle # III: Input Feature-wise Partition to Save Acti-
vation Memory Size. To save the activation memory size, we can
partition the input image along the input activation’s feature map
dimensions (i.e., the height and the width of the input feature map)
and process each individual partition through cross-layer process-
ing. As illustrated in Fig. 8, the on-chip activation memory only
needs to store the activations of each partition. The overall activa-
tion memory size is about 36% (i.e., 1MB) of that before partition.

Principle # IV: Parallelism of Memory Access and Process-
ing to Save Activation Memory Bandwidth. Note that loading
the activations from the memory for the next round of processing
and the running of the current round of processing can be paralleled,
where we denote the one round of processing as the processing
using the same activations. Since each round of processing usually
takes several cycles (e.g., the number of cycle equals to kernel sizes
in our design), we propose to load the next-round activations se-
quentially from the memory during the current-round processing
and then the already loaded next-round activations can be read out
in parallel for the next round of processing. This parallelism of mem-
ory access and processing can save activation memory bandwidth.
A sequential-write-parallel-read input activation buffer is needed
to enable the parallelism, which is described in Sec. 5.2. Assuming a
commonly-used 3×3 kernel, the propose parallelism saves 50%∼60%
memory bandwidth and the sequential-write-parallel-read input
activation buffer incurs a negligible area overhead of 0.58%.

5.2 Architecture of EyeCoD’s Accelerator
This section describes the proposed accelerator architecture as

well as the design optimizations following the principles in Sec. 5.1.
Architecture Overview. Fig. 9 presents the architecture of

EyeCoD’s accelerator which consists of the following components:
(1) on-chip memories for weights, input/output activations, and

Input Act Weight Output Act

...

MAC
0

MAC
1

MAC
7 ...

...

...

MAC
0

MAC
1

MAC
7 ...

1

Act
GB0

Weight
GB

Act
GB1

Input
Act Buffer

ControllorInstr. SRAM

Output
Act Buffer

Weight
Buffer 1

Weight
Buffer 0

127

MAC
0

MAC
1

MAC
7 ...

0

M
A

C
 Lane

M
A

C
 Lane

M
A

C
 Lane

...
Figure 9: An illustration of EyeCoD’s accelerator.

instructions, (2) computation resources, i.e., 128 MAC lanes, and (3)
an on-chip controller. First, two memory hierarchies are adopted.
Specifically, the weight GB (i.e., global buffer) stores the parameters
of the involved models as well as the reconstruction in EyeCoD’s
predict-then-focus processing pipeline. Two weight buffers are
inserted between weight GB and MAC lanes and work in a "ping-
pong" manner to avoid the weight load stalls. Similarly, an input
Act buffer and a output Act buffer are inserted between the Act GBs
and the MAC lanes to prepare activations for the MAC lanes or Act
GB to eliminate input load or output write stalls. Second, each MAC
lane is composed of eight MACs and one input Act FIFO to store
one row of input activations. The weights of one row are fetched
one-by-one from the weight buffer for multiplying one row of input
activations in the input Act FIFO. Therefore, each MAC lane is able
to reuse the loaded input activation row, i.e., row-wise intra-channel
reuse which is ubiquitous among all convolution layers. Third, to
implement EyeCoD’s predict-then-focus processing pipeline, the
on-chip controller reads instructions from the instruction SRAM to
control the accelerator.

Optimizations for Depth-wise Layer. As discussed in Sec. 5.1,
the dataflow for generic/point-wise convolution layers is not suf-
ficient for depth-wise layers, resulting in low MAC utilization or
higher input Act bandwidth. To address this, intra-channel reuse is
adopted for increasing MAC utilization and better leveraging the
limited memory bandwidth. Fig. 10 illustrates two intra-channel
reuse opportunities, column-wise intra-channel reuse (Fig. 10 (a)) and

(a)

(b)

Input Act. Weight Output Act.

Input Act. Weight Output Act.

Figure 10: Optimizations for depth-wise convolution layers:
(a) column-wise intra-channel reuse and (b) deeper row-wise
intra-channel reuse.

EyeCoD: Eye Tracking System Acceleration via FlatCam-based Algorithm & Accelerator Co-Design ISCA ’22, June 18–22, 2022, New York City, NY

(a)

addr0

addr1

bank 0
bank 1
bank 2
bank 3
bank 0
bank 1

addr2

addr3

(b) (c) (d) (e)

Figure 11: An illustration of the proposed activation GB storage arrangement: an example of (a) the storage arrangement of a
6×6×24 activation tensor, (b) the partition operation, (c) the concatenation operation, (d) the downsampling operation, and (e)
the upsampling operation.

deeper row-wise intra-channel reuse (Fig. 10 (b)), for depth-wise con-
volution layers besides the row-wise intra-channel reuse on each
MAC lane. For the former column-wise intra-channel reuse method,
multiple weight rows in one column of each 3D weight filter reuse
one same input activation row and generate multiple output activa-
tion rows in the corresponding column. This technique achieves an
utilization improvement proportional to the number of available
weight rows or the kernel size (e.g., 3 or 5 for the gaze estimation
model) as shown in Fig. 10 (a). The latter deeper row-wise intra-
channel reuse is proposed because the row-wise intra-channel reuse
on each MAC lane is limited by the number of MACs of each MAC
lane (i.e., 8 MACs/MAC lane in our design). For the latter deeper
row-wise intra-channel reuse, we tile one input Act row into two
sub rows, and further spatially map these two sub input Act rows
and their corresponding weight row to two MAC lanes, doubling
the MAC utilization.

Activation GB Storage Arrangement. Due the diverse model
structures as well as layer types and shapes in EyeCoD’s predict-
then-focus processing pipeline, various activation reshaping op-
erations are needed. The various reshaping operations impose a
challenge for the activation GB storage arrangement, i.e., how to
support different activation reshaping operations without compli-
cating controls. We first classify the activation reshaping operations
into four classes and then propose an optimized activation GB stor-
age arrangement considering the characterizations of the reshaping
operations.

Four classes of reshaping operations are involved in EyeCoD’s
predict-then-focus processing pipeline: the partition operation (see
Fig. 11 (b)) which tiles one input activation tensor into several
partitions along activation feature map dimensions to enable the
sequential processing of the partitions, the concatenation operation
(see Fig. 11 (c)) which concatenates several tiled output activation
tensors generated sequentially by the MAC lanes to the output
tensor by along the channel dimension, the downsampling oper-
ation (see Fig. 11 (d)) for downsampling layers which drops the
activations in each activation feature map, and the upsampling
operation (see Fig. 11 (e)) for upsampling layers which inserts ze-
ros or duplicates activations in each activation feature map. We
propose an activation GB storage arrangement where each acti-
vation memory bank address stores one tile of activations along
the channel dimension, e.g., 16 activation pixels along the channel

(a)

(b)

Tmp Buffer
In Act G0

In Act G1

Switch
Control

time

0

Row 16~31 Row 32~47 Row 48~63 Row 64~79 Row 80~95

Row 0~15 Row 32~47 Row 64~79

Row 16~31 Row 48~63

1 0 1 0

......

Tmp Buffer

In Act G1In Act G0

M*Input Act RowsIndex

128*2b

MAC Lane 0 MAC Lane 1 MAC Lane 127...

Switch
Control

2*M*Input
Act Rows

MUX0 1

Figure 12: The sequential-write-parallel-read input activa-
tion buffer: (a) design scheme and (b) a timing diagram ex-
ample.

dimension per address, This activation GB storage arrangement
considers the reshaping operation granularities along activation
feature map and channel dimensions to simplify controlling designs.
We provide a more detailed explanation below. In particular, this
storage arrangement considers that the reshaping operations along
feature map dimensions (i.e., the partition, downsampling, and up-
sampling operations) are usually at the granularity of 1. In contrast,
the granularity of the reshaping pattern along channel dimension
(i.e., the concatenation pattern) is related to the number of MAC
lanes assigned to a certain layer, which is a multiplication of 16 in
our design. Fig. 11 (a) gives an example of the storage arrangement
of one activation tensor with the shape of 6×6×24. We place four
memory banks in parallel for one activation GB and the 6×6×24
activation tensor takes 24 addresses in total. By properly accessing
the activation tiles’ addresses, the aforementioned four activation
reshaping operations are easily supported.

ISCA ’22, June 18–22, 2022, New York City, NY You et al.

Sequential-write-parallel-read Input Activation Buffer De-
sign. The sequential-write-parallel-read input activation buffer
design is demonstrated in Fig. 12 (a) with a timing diagram example
in Fig. 12 (b). In the sequential-write-parallel-read input activation
buffer, a temp buffer sequentially fetches𝑀 input activation rows
from the Act GBs (𝑀 = 16 in this design) for next round of process-
ing and then stores the fetched rows in two interleaved buffers (i.e.,
In Act G0/G1) following the design principle in Sec. 5.1. After the
MAC lanes finish the current round of processing, they can read the
input activation rows in parallel from In Act G0/G1. Thanks to this
sequential-write-parallel-read buffer design, 2× higher bandwidth
(i.e., 2 ×𝑀) is achieved without memory access stalls which can
satisfy the bandwidth requirement for EyeCoD’s predict-then-focus
processing pipeline..

6 EXPERIMENTS
In this section, we present a thorough evaluation of the proposed

EyeCoD framework, including the experiment setups in Sec. 6.1,
the overall benchmark with CPUs/GPUs and previous SOTA eye
tracking processors in Sec. 6.2, and the evaluation and ablation
studies of EyeCoD’s algorithm and accelerator in Sec. 6.3 and Sec.
6.4, respectively.

6.1 Experiment Setups
Model, Datasets, and Training Settings.Model: We use the

RITNet [30] and FBNet-C100 [43] as our backbone model for eye
segmentation and gaze estimation stage, respectively. Datasets:
For evaluating our proposed predict-then-focus pipeline, we use
OpenEDS2019 and OpenEDS2020 dataset [21, 35] for segmenta-
tion and gaze estimation, respectively. OpenEDS2019 segmentation
dataset [21] consists of around 8916 labeled images for training 2403
images for validation. OpenEDS2020 gaze estimation dataset [35]
consists of around 128,000 labeled images for training and 70,400
for validation. To simulate the FlatCam reconstructed image, we
follow the proposed simulation and reconstruction method in [4].
Training Settings: For evaluating the performance of the entire
pipeline, we first crop 512×512 image patches from the center of
all images in both datasets for satisfying the requirement that Flat-
Cam’s input images are square [4]. (1) For eye segmentation, we
downsample the input image from 512× 512 resolution to 128× 128
resolution before feeding it into the model. Following the award-
winning solution [9], we train the model for 300 epochs with a
hybrid loss consisting of standard cross entropy loss, generalized
dice loss, boundary aware loss, and surface loss. We optimize the
model using Adam optimizer [27] with learning rate 1 × 10−3, and
batch size 8. (2) For gaze estimation, we resize the input image to
256 × 256 resolution and crop a 96×160 ROI region before passing
it into the gaze estimation network. Following [35], we train the
model with arccosine loss for 25 epochs using Adam optimizer [27]
with learning rate of 5 × 10−4, and batch size of 32.

Baselines and Evaluation Metrics. Baselines: We choose four
general computing platforms EdgeCPU (Raspberry Pi), CPU (AMD
EPYC 7742), EdgeGPU (Nvidia Jetson TX2), GPU (Nvidia 2080Ti),
and one eye tracking processor CIS-GEP [5] as baselines. The batch
size for CPU and GPU is set to 1 for a fair comparison. For analyzing
the overall estimation accuracy of our FlatCam-based system and

Technology 28nm

Chip Area 3.00 mm2

Supply
Voltage

0.51-0.8 V (Core)
0.59-0.88 V (Mem)

Core
Frequency 370 MHz @ (0.8V, 0.88V)

Total SRAM 316KB

of MACs 512

Power 154.32 mW
@ (0.8V. 0.88V), 370 MHz

Weight GB

A
ct

 G
B

 0
/1

Index

Weight
Buffer 0/1

Instr.

MAC Lanes
Input Act Buffer

Output Act Buffer
& Other Modules

Figure 13: EyeCoD silicon prototype: die photo and chip spec-
ifications.

Table 1: Accelerator configurations.

Act GB0/GB1 Weight Buffer0/1 Weight GB Index SRAM Instr. SRAM

512KB * 2 64KB * 2 512KB 20KB 4KB

MAC Lanes MACs/MAC Lane Area Clock frequency Power

128 8 8𝑚𝑚2 370MHz 335mW

the proposed predict-then-focus pipeline, we compare EyeCoDwith
the winner method in OpenEDS2020 [35]. Metrics: We evaluate all
above platforms in terms of both throughput and energy efficiency.
In addition, we compare the achievedmIOU and FLOPs comparisons
for EyeCoD’s segmentationmodels, gaze estimation error in degrees
and FLOPs for EyeCoD’s gaze estimation models.

Hardware Platform Setup. Silicon-validated EyeCoD. Fig. 13
illustrates the specifications of the silicon-validated EyeCoD’s ac-
celerator which is denoted as the chip for convenience. Specif-
ically, the chip is fabricated in a commercial 28nm HPC CMOS
technology, with a total chip area of 3mm2, a core/memory supply
voltage of 0.8V/0.88V, and a power of 154.32mW at a 370MHz fre-
quency. The chip is equipped with 316KB SRAM and 512 MACs.
EvaluationMethodology. To enable a fair comparison with the base-
line designs with a larger area than the silicon-validated chip, we
develop an in-house cycle-accurate simulator of EyeCoD’s accel-
erator, for which the MAC and memory access costs are derived
from the real chip measurement or the post-layout simulation. The
simulator is verified against the Register-Transfer-Level (RTL) im-
plementation of EyeCoD’s accelerator to ensure its correctness,
Technology-dependent Parameters. Tab. 1 presents the character-
istics of our cycle-accurate simulator of EyeCoD’s accelerator used
throughout the experiments. Specifically, we implemented 128MAC
lanes with each containing 8 MACs. The SRAM includes two Act
GBs with 512KB each (Act GB0/GB1 in Fig. 9), two weight buffers
with 64KB each (Weight Buffer0/1 in Fig. 9), one weight GB with
512KB (Weight GB in Fig. 9), one index buffer with 20KB (Index
SRAM in Fig. 9), and one instruction buffer with 4KB (Instr. SRAM
Fig. 9). Same as the silicon-validated chip, the cycle-accurate simu-
lator assumes a 370 MHz frequency.

EyeCoD: Eye Tracking System Acceleration via FlatCam-based Algorithm & Accelerator Co-Design ISCA ’22, June 18–22, 2022, New York City, NY

0
50
100
150
200
250
300
350
400
450

0.0

0.2

0.4

0.6

0.8

1.0

1.2

EdgeCPU CPU EdgeGPU GPU CIS-GEP EyeCoD

Th
ro

ug
hp

ut
(F

PS
)

N
or

m
. E

ne
rg

y
Ef

fic
ie

nc
y

8.81 X12.85 X

Figure 14: Overall comparison between EyeCoD and other
five baselines in terms of both energy efficiency and through-
put.

6.2 Overall Performance Comparison
In this part of experiment, we benchmark the proposed EyeCoD’s

overall performance (normalized energy efficiency vs. through-
put) against the CPUs/GPUs and previous SOTA eye tracking pro-
cessors [5]. As shown in Fig. 14, the proposed EyeCoD consis-
tently achieves both the best normalized energy efficiency and
throughput among all the baselines. Specifically, EyeCoD achieves
2966.65×, 12.75×, 14.83×, 2.61×, and 12.86× improvements in terms
of throughput as compared to EdgeCPU, CPU, EdgeGPU, GPU, and
CIS-GEP baselines, respectively. Meanwhile, EyeCoD maintains a
high energy efficiency, achieving 8.81× improvement as compared
to the most competitive baseline ASIC accelerator CIS-GEP [5].
We conjure that the improved throughput comes from the sensor-
processor co-design and the various optimization techniques as
proposed in Sec. 5.2, e.g, customization for different layer types,
the proposed sequential-write-parallel-read input activation buffer
design, that offer better matched spatial tiling of each operator
type to the MAC lanes and reduce the memory stalls, respectively,
thus in turn leading to the improved hardware utilization. As for
the improved energy efficiency, the tailored handling of the depth-
wise convolution layer produces much more intra layer data reuse,
resulting in much reduced off-chip memory access and thus also
reduced power consumption.

6.3 Evaluation of the EyeCoD Algorithm
Algorithm pipeline evaluation.We first evaluate the neces-

sity of our proposed pipeline with optimized input resolution by
benchmarking EyeCoD with vanilla gaze estimation. For the base-
line method, we report the winner in [35] that achieves 2.31 degrees
error at the cost of 1.82GFLOPs. As shown in Tab. 2, our proposed
EyeCoD with the same model (i.e., ResNet18) achieves comparable
gaze estimation error (0.10 degree higher) with over 69.2% FLOPs
reduction, suggesting that (1) a FlatCam-based eye tracking sys-
tem does not degrade the accuracy, (2) it is necessary to use an
optimized input size for a higher accuracy-efficiency trade-off.

Gaze Estimation On top of the FlatCam system and the pio-
neering SOTA model ResNet18, we evaluate the effectiveness of
various models for gaze estimation. As shown in Tab. 2, EyeCoD
with FBNet-C100 (8-int) (highlighted in bold) improves the error of
ResNet18 by 0.04 while reducing FLOPs by 78.2%.

Table 2: Benchmark EyeCoD gaze estimation algorithm on
OpenEDS’20 dataset with FlatCam reconstructed dataset. The
adopted setting in EyeCoD is marked in bold.

Model Camera Resolution Error Parameter FLOPs
ResNet18 [35] Lens 224×224 3.17 11.18M 1.82 G
ResNet18

FlatCam 96×160

3.27 11.18M 0.56G
MobileNet 3.43 2.23M 0.10G
FBNet-C100 3.23 3.59M 0.12G

FBNet-C100 (8-bit) 3.23 3.59M 0.01G

Table 3: Benchmark RITNet performance on OpenEDS’19
dataset under different experiment settings, the adopted set-
ting in EyeCoD is marked in bold.

Model Resolution Eye Segmentation mIOU FLOPsOrigin Image FlatCam Image
U-net 512×512 93.3 92.5 14.1G
RITNet 512×512 95.1 93.6 17.0G
RITNet 256×256 94.7 93.8 4.1G

RITNet (8-bit) 256×256 94.0 92.8 0.3G
RITNet 128×128 94.1 93.5 1.0G

RITNet (8-bit) 128×128 93.3 92.7 0.1G

ROI Prediction. We further validate the effectiveness of the
ROI prediction algorithm we propose by benchmarking our eye
segmentation algorithm performance under various settings. Com-
pare to the original result in [21], our proposed algorithm face three
more challenges, (1) lower signal-to-noise ratio (SNR) of the Flat-
Cam reconstructed image, (2) smaller resolution (116 of the original
resolution size), and (3) 8-bit quantized model. As shown in the
Tab. 3, despite the aforementioned challenges and 16× FLOPs reduc-
tion, the segmentation algorithm of EyeCoD (marked in bold) still
achieves comparable performance (achieving around 93% mIOU on
validation dataset) as the award-winning solution in [21]. Moreover,
when segmenting on the FlatCam dataset instead of the original
image, all networks suffers from performance degradation in terms
of mIOU ranging between 1.5% to 0.6%. However, smaller resolution
in general suffers less from the adaption of dataset, we suspect this
is due to the relatively lower SNR in FlatCam reconstructed images,
making it hard for the models to learn the detailed features in the
high-resolution images.

Ablation Studies. As shown in Tab. 4, the extracted ROIs aug-
ment the gaze estimation by centralizing the eye areas, leading
to 9.41 and 8.24 error reductions as compared to random crop or
central crop, respectively. This set of experiments validate that ex-
tracting ROIs not only reduces the computational cost but also helps
to mitigate the undesired effect of FlaCam’s blurred images. We
also test different ROI sampling frequencies, as shown in Tab. 5, and
find that (1) the gaze estimation error and the segmentation FLOPs
per frame in general gradually increase alone with the increased
ROI sampling frequency, while the error reduction is negligible
when sampling frequency is higher than 1 over every 50 frames,
and (2) a larger ROI size leads to a better gaze estimation accuracy,
where the increase is not significant after the ROI size is larger
than 96×160. Thus, our adopted setting (i.e., extracting ROI every

ISCA ’22, June 18–22, 2022, New York City, NY You et al.

Table 4: Ablation studies of EyeCoD’s ROI prediction.

Random Crop Central Crop ROI (Ours)
Gaze Estimation Error 12.64 11.57 3.23

Table 5: Ablation studies of both EyeCoD’s ROI prediction
frequency and ROI sizes.

ROI Freq. ROI Size Gaze Estimation
Error

Gaze Estimation
FLOPs/Frame

Segmentation
FLOPs/Frame

25 96×160 3.23 7.58M 2.5M
50 48×80 3.60 2.28M 1.3M
50 96×160 3.23 7.58M 1.3M
50 144×240 3.19 18.13M 1.3M
100 96×160 3.34 7.58M 0.7M

50 frames with a size of 96× 160) achieves an optimal accuracy and
inference FLOPs trade-off.

6.4 Evaluation of the EyeCoD Accelerator and
System

In this experiment, we perform ablation studies to evaluate Eye-
CoD’s contributions for better understanding its overall superiority.
To quantify the impact of different contributions, we build a lens-
based system and run the original images of 256×256 resolution on
the system. Specifically, the accelerator in the lens-based system
removes the hardware-level contributions (including the input acti-
vation buffer design, the time-multiplexing workload orchestration,
and the intra-channel reuse for depth-wise layers). Please note that
the accelerator here keeps EyeCoD’s input feature-wise partition
to fit the same area and adopts the time-multiplexing mode, where
one layer of the eye segmentation model and the gaze estimation
model occupy the whole MACs iteratively. We calculate the impact
from each of our contributions by applying the FlatCam sensor and
the predict-then-focus pipeline, and hardware-level contributions
to the lens-based system one-by-one.

Among the 4.00× throughput/energy efficiency improvement
over the lens-based eye tracking system, adopting the FlatCam
sensor and the predict-then-focus pipeline leads to 1.99× through-
put/energy efficiency improvement, while applying the proposed
input activation buffer, partial time-multiplexing mode, and intra-
channel reuse optimizations further offer 1.22×, 1.28×, and 1.29×
throughput/energy-efficiency improvement, respectively. In partic-
ular, (1) the proposed predict-then-focus pipeline helps to reduce the
image resolution by 76.5%, thus improving the throughput as well
as the energy efficiency by 1.99×; (2) the sequential-write-parallel-
read activation buffer, which enables the parallelism of memory
access and processing, helps to reduce input reading stalls due to
the limited activation GB bandwidth and thus improves the perfor-
mance; (3) the partial time-multiplexing mode, leveraging the two
NNs’ different execution frequencies for workload-orchestration,
achieves 1.28× speedup than the time-multiplexing mode; and (4)
the intra-channel reuse further reduces 71% of the depth-wise lay-
ers’ processing time, resulting in 1.29× speedup.

Table 6: Throughput and normalized energy efficiency of the
proposed EyeCoD w/ and w/o predict-then-focus pipeline
(P.F.), sequential-write-parallel-read input activation buffer
design (Input.), partial time-multiplexing workload orches-
tration (Partial.), and intra-channel reuse for depth-wise lay-
ers (Depth.). The last row is the final adopted EyeCoD system.

System★ Throughput
(FPS)

Norm.
Energy Eff.

Lens-based System∗ 96.34 1.00
EyeCoD w/ P.F.∗ 191.94 1.99
EyeCoD w/ P.F. & Input. 233.64 2.43
EyeCoD w/ P.F. & Input. & Partial. 299.04 3.10
EyeCoD w/ P.F. & Input. & Partial. & Depth. 385.66 4.00

★ All settings use input feature-wise partition.
∗ Using time-multiplexing mode.

7 CONCLUSION
To this work, we propose, develop, and validate a lensless FlatCam-

based eye tracking algorithm and accelerator co-design framework
dubbed EyeCoD to enable eye tracking systems with a much re-
duced form-factor and boosted system efficiency without sacrificing
tracking accuracy, targeting next-generation eye tracking solutions.
On the system level, we advocate the use of lensless FlatCams
instead of lens-based cameras to facilitate the small form-factor
need in mobile eye tracking systems. On the algorithm level, Eye-
CoD integrates a predict-then-focus pipeline that first predicts the
region-of-interest ROI and then only focuses on the ROI parts to
estimate gaze directions. On the hardware level, we further develop
a dedicated accelerator that integrates a novel workload orchestra-
tion between the aforementioned segmentation and gaze estimation
models, and leverages multiple optimization to further improve the
acceleration efficiency. On-silicon measurement and extensive ex-
periments validate advantages of our EyeCoD in enhancing the
end-to-end eye tracking throughput while maintaining the tracking
accuracy.

ACKNOWLEDGMENT
We would like to acknowledge the funding support from the

NSF RTML program (Award number: 1937592) and the NSF EPCN
program (Award number: 1934767) for this project.

REFERENCES
[1] Micheal Ambrash. 2021. Creating the Future: Augmented Reality, the Next

Human-Machine Interface. In IEDM. 1–4.
[2] Nick Antipa, Grace Kuo, Reinhard Heckel, Ben Mildenhall, Emrah Bostan, Ren

Ng, and Laura Waller. 2018. DiffuserCam: lensless single-exposure 3D imaging.
Optica 5, 1 (Jan 2018), 1–9. https://doi.org/10.1364/OPTICA.5.000001

[3] M Salman Asif, Ali Ayremlou, Aswin Sankaranarayanan, Ashok Veeraraghavan,
and Richard Baraniuk. 2015. Flatcam: Thin, bare-sensor cameras using coded
aperture and computation. arXiv preprint arXiv:1509.00116 (2015).

[4] Salman Asif, Ali Ayremlou, Aswin Sankaranarayanan, Ashok Veeraraghavan,
and Richard Baraniuk. 2015. FlatCam: Thin, Bare-Sensor Cameras using Coded
Aperture and Computation. (08 2015).

[5] Kyeongryeol Bong, Injoon Hong, Gyeonghoon Kim, and Hoi-Jun Yoo. 2016. A
0.5° error 10 mW CMOS image sensor-based gaze estimation processor. IEEE
Journal of Solid-State Circuits 51, 4 (2016), 1032–1040.

[6] Kyeongryeol Bong, Injoon Hong, Gyeonghoon Kim, and Hoi-Jun Yoo. 2016. A
0.5° error 10 mW CMOS image sensor-based gaze estimation processor. IEEE
Journal of Solid-State Circuits 51, 4 (2016), 1032–1040.

https://doi.org/10.1364/OPTICA.5.000001

EyeCoD: Eye Tracking System Acceleration via FlatCam-based Algorithm & Accelerator Co-Design ISCA ’22, June 18–22, 2022, New York City, NY

[7] V. Boominathan, J. Adams, J. Robinson, and A. Veeraraghavan. 2020. PhlatCam:
Designed phase-mask based thin lensless camera. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2020), 1–1.

[8] Braiden Brousseau, Jonathan Rose, and Moshe Eizenman. 2018. Smarteye: An
accurate infrared eye tracking system for smartphones. In 2018 9th IEEE Annual
Ubiquitous Computing, Electronics & Mobile Communication Conference (UEM-
CON). IEEE, 951–959.

[9] Aayush K Chaudhary, Rakshit Kothari, Manoj Acharya, Shusil Dangi, Nitinraj
Nair, Reynold Bailey, Christopher Kanan, Gabriel Diaz, and Jeff B Pelz. 2019.
RITnet: Real-time semantic segmentation of the eye for gaze tracking. In 2019
IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). IEEE,
3698–3702.

[10] Huaijin G Chen, Suren Jayasuriya, Jiyue Yang, Judy Stephen, Sriram Sivaramakr-
ishnan, Ashok Veeraraghavan, and Alyosha Molnar. 2016. ASP vision: Optically
computing the first layer of convolutional neural networks using angle sensi-
tive pixels. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 903–912.

[11] Huaijin G. Chen, Suren Jayasuriya, Jiyue Yang, Judy Stephen, Sriram Sivara-
makrishnan, Ashok Veeraraghavan, and Alyosha C. Molnar. 2016. ASP Vi-
sion: Optically Computing the First Layer of Convolutional Neural Networks
using Angle Sensitive Pixels. CoRR abs/1605.03621 (2016). arXiv:1605.03621
http://arxiv.org/abs/1605.03621

[12] Y. Chen, T. Krishna, J. Emer, and V. Sze. 2017. Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks. JSSC 2017
52, 1 (2017), 127–138.

[13] Y. Cheng, F. Lu, and X. Zhang. 2018. Appearance-based gaze estimation via
evaluation-guided asymmetric regression. In Proceedings of The European Confer-
ence on Computer Vision.

[14] Wanli Chi and Nicholas George. 2011. Optical imaging with phase-coded aperture.
Opt. Express 19, 5 (Feb 2011), 4294–4300. https://doi.org/10.1364/OE.19.004294

[15] H. Deng and W. Zhu. 2017. Monocular free-head 3d gaze tracking with deep
learning and geometry constraints. In Proceedings of the International Conference
on Computer Vision. 3162–3171.

[16] Michael J. DeWeert and Brian P. Farm. 2014. Lensless coded aperture imaging
with separable doubly Toeplitz masks. In Compressive Sensing III, Fauzia Ahmad
(Ed.), Vol. 9109. International Society for Optics and Photonics, SPIE, 180 – 191.
https://doi.org/10.1117/12.2050760

[17] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo,
Xiaobing Feng, Yunji Chen, and Olivier Temam. 2015. ShiDianNao: Shifting vision
processing closer to the sensor. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture. 92–104.

[18] Ryoji Eki, Satoshi Yamada, Hiroyuki Ozawa, Hitoshi Kai, Kazuyuki Okuike,
Hareesh Gowtham, Hidetomo Nakanishi, Edan Almog, Yoel Livne, Gadi Yuval,
et al. 2021. 9.6 A 1/2.3 inch 12.3Mpixel with On-Chip 4.97 TOPS/WCNNProcessor
Back-Illuminated Stacked CMOS Image Sensor. In 2021 IEEE International Solid-
State Circuits Conference (ISSCC), Vol. 64. IEEE, 154–156.

[19] T. Fischer, Jin Chang, Demiris H., and Y.: Rt-gene. 2018. Real-time eye gaze
estimation in natural environments. In Proceedings of the European Conference on
Computer Vision.

[20] Yonggan Fu, Yang Zhang, Yue Wang, Zhihan Lu, Vivek Boominathan, Ashok
Veeraraghavan, and Yingyan Lin. 2021. SACoD: Sensor Algorithm Co-Design
Towards Efficient CNN-Powered Intelligent PhlatCam. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV). 5168–5177.

[21] Stephan J Garbin, Yiru Shen, Immo Schuetz, Robert Cavin, Gregory Hughes, and
Sachin S Talathi. 2019. Openeds: Open eye dataset. arXiv preprint arXiv:1905.03702
(2019).

[22] Injoon Hong, Kyeongryeol Bong, Dongjoo Shin, Seongwook Park, Kyuho Jason
Lee, Youchang Kim, and Hoi-Jun Yoo. 2015. A 2.71 nJ/pixel gaze-activated object
recognition system for low-power mobile smart glasses. IEEE Journal of Solid-
State Circuits 51, 1 (2015), 45–55.

[23] G. Huang, H. Jiang, K. Matthews, and P. Wilford. 2013. Lensless imaging by
compressive sensing. In 2013 IEEE International Conference on Image Processing.
2101–2105. https://doi.org/10.1109/ICIP.2013.6738433

[24] G. Huang, Z. Liu, Van Der Maaten, Weinberger L., and K. Q.: Densely con-
nected convolutional networks. 2017. In: Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition. p (2017), 4700–4708.

[25] Anton S Kaplanyan, Anton Sochenov, Thomas Leimkühler, Mikhail Okunev, Todd
Goodall, and Gizem Rufo. 2019. DeepFovea: neural reconstruction for foveated
rendering and video compression using learned statistics of natural videos. ACM
Transactions on Graphics (TOG) 38, 6 (2019), 1–13.

[26] Salman Siddique Khan, Varun Sundar, Vivek Boominathan, Ashok Veeraraghavan,
and Kaushik Mitra. 2020. Flatnet: Towards photorealistic scene reconstruction
from lensless measurements. IEEE Transactions on Pattern Analysis and Machine
Intelligence (2020).

[27] D. P. Kingma and J.: Adam: A Ba. 2015. method for stochastic optimization. In
Proceedings of the International Conference on Learning Representations.

[28] K. Krafka, A. Khosla, P. Kellnhofer, H. Kannan, S. Bhandarkar, W. Matusik, and
A. Torralba. 2016. Eye tracking for everyone. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR.
[29] Weitao Li, Pengfei Xu, Yang Zhao, Haitong Li, Yuan Xie, and Yingyan Lin. 2020.

TIMELY: Pushing Data Movements and Interfaces in PIM Accelerators towards
Local and in Time Domain. In Proceedings of the ACM/IEEE 47th Annual Inter-
national Symposium on Computer Architecture (Virtual Event) (ISCA ’20). IEEE
Press, 832–845. https://doi.org/10.1109/ISCA45697.2020.00073

[30] Yingyan Lin, Charbel Sakr, Yongjune Kim, and Naresh Shanbhag. 2017. Predic-
tiveNet: An energy-efficient convolutional neural network via zero prediction.
In 2017 IEEE International Symposium on Circuits and Systems (ISCAS). 1–4.

[31] Chiao Liu, Andrew Berkovich, Qing Chao, Song Chen, Ziyun Li, Hans Reyserhove,
Syed Shakib Sarwar, and Tsung-Hsun Tsai. 2020. Intelligent Vision Sensors for
AR/VR. In Imaging Systems and Applications. Optical Society of America, ITu5G–
1.

[32] Chiao Liu, Andrew Berkovich, Song Chen, Hans Reyserhove, Syed Shakib Sar-
war, and Tsung-Hsun Tsai. 2019. Intelligent Vision Systems–Bringing Human-
Machine Interface to AR/VR. In 2019 IEEE International Electron Devices Meeting
(IEDM). IEEE, 10–5.

[33] Sungmin Moon, Chao Zhang, Sooill Park, Hui Zhang, Woo-Shik Kim, and
Jong Hwan Ko. 2021. A Sub-Milliwatt and Sub-Millisecond 3-D Gaze Estima-
tor for Ultra Low-Power AR Applications. In Adjunct Proceedings of the 2021
ACM International Joint Conference on Pervasive and Ubiquitous Computing and
Proceedings of the 2021 ACM International Symposium on Wearable Computers.
481–485.

[34] A. Newell, K. Yang, and J. Deng. 2016. Stacked hourglass networks for human
pose estimation. In European conference on computer vision. 483–499.

[35] Cristina Palmero, Abhishek Sharma, Karsten Behrendt, Kapil Krishnakumar,
Oleg V Komogortsev, and Sachin S Talathi. 2021. OpenEDS2020 Challenge on
Gaze Tracking for VR: Dataset and Results. Sensors 21, 14 (2021), 4769.

[36] S. Park, A. Spurr, and O. Hilliges. 2018. Deep pictorial gaze estimation. In European
conference on computer vision.

[37] Takeshi Shimano, Yusuke Nakamura, Kazuyuki Tajima, Mayu Sao, and Taku
Hoshizawa. 2018. Lensless light-field imaging with Fresnel zone aperture: quasi-
coherent coding. Appl. Opt. 57, 11 (Apr 2018), 2841–2850. https://doi.org/10.
1364/AO.57.002841

[38] David G. Stork. 2013. Lensless Ultra-Miniature CMOS Computational Imagers
and Sensors.

[39] Yusuke Sugano, Yasuyuki Matsushita, and Yoichi Sato. 2014. Learning-by-
synthesis for appearance-based 3d gaze estimation. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 1821–1828.

[40] K. H. Tan, D. J. Kriegman, and N. Ahuja. 2002. Appearance-based eye gaze
estimation. In: Sixth IEEE Workshop on Applications of Computer Vision 2002
(2002), 191–195.

[41] E. Wood, T. Baltrušaitis, L. P. Morency, P. Robinson, and A.: A Bulling. 2016. 3d
morphable model of the eye region. In: Proceedings of the 37 (2016), 35–36.

[42] E.Wood andA.: Eyetab Bulling. 2014. Model-based gaze estimation on unmodified
tablet computers. In Proceedings of the Symposium on Eye Tracking Research and
Applications. ACM, 207–210.

[43] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming
Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. 2019. Fbnet:
Hardware-aware efficient convnet design via differentiable neural architecture
search. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 10734–10742.

[44] Chenhao Xie, Xie Li, Yang Hu, Huwan Peng, Michael Taylor, and Shuaiwen Leon
Song. 2021. Q-VR: system-level design for future mobile collaborative virtual
reality. In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems. 587–599.

[45] X. Zhang, Y. Sugano, M. Fritz, and A. Bulling. 2015. Appearance-based gaze
estimation in the wild. In Proceedings of the IEEE conference on computer vision
and pattern recognition. 4511–4520.

[46] Shulin Zhao, Haibo Zhang, Cyan Subhra Mishra, Sandeepa Bhuyan, Ziyu Ying,
Mahmut Taylan Kandemir, Anand Sivasubramaniam, and Chita Das. 2021.
HoloAR: On-the-fly Optimization of 3D Holographic Processing for Augmented
Reality. In MICRO-54: 54th Annual IEEE/ACM International Symposium on Mi-
croarchitecture. 494–506.

[47] Yang Zhao, Xiaohan Chen, YueWang, Chaojian Li, Haoran You, Yonggan Fu, Yuan
Xie, Zhangyang Wang, and Yingyan Lin. 2020. SmartExchange: Trading Higher-
Cost Memory Storage/Access for Lower-Cost Computation. In Proceedings of the
ACM/IEEE 47th Annual International Symposium on Computer Architecture (Virtual
Event) (ISCA ’20). IEEE Press, 954–967. https://doi.org/10.1109/ISCA45697.2020.
00082

https://arxiv.org/abs/1605.03621
http://arxiv.org/abs/1605.03621
https://doi.org/10.1364/OE.19.004294
https://doi.org/10.1117/12.2050760
https://doi.org/10.1109/ICIP.2013.6738433
https://doi.org/10.1109/ISCA45697.2020.00073
https://doi.org/10.1364/AO.57.002841
https://doi.org/10.1364/AO.57.002841
https://doi.org/10.1109/ISCA45697.2020.00082
https://doi.org/10.1109/ISCA45697.2020.00082

	Abstract
	1 Introduction
	2 Related Works
	3 EyeCoD: Motivation and Overview
	3.1 Why Existing Eye Tracking Solutions Are Still Inefficient
	3.2 Why EyeCoD Works and Overview

	4 Proposed EyeCoD's Sensing and Processing Pipeline
	4.1 Preliminary of Lensless FlatCams
	4.2 EyeCoD's Sensing-processing Interface
	4.3 EyeCoD's Predict-then-focus Processing Pipeline

	5 Proposed EyeCoD's Accelerator
	5.1 Design Challenges and Principles
	5.2 Architecture of EyeCoD's Accelerator

	6 Experiments
	6.1 Experiment Setups
	6.2 Overall Performance Comparison
	6.3 Evaluation of the EyeCoD Algorithm
	6.4 Evaluation of the EyeCoD Accelerator and System

	7 Conclusion
	References

