
H. You1, C. Wan1, Y. Zhao1, Z. Yu1, Y. Fu1, J. Yuan1, S. Wu1, S. Zhang1, Y. Zhang1, C. Li1, V. Boominathan1, A. Veeraraghavan1, Z. Li2, and Y. Lin1

EyeCoD: Eye Tracking System Acceleration via FlatCam-based
Algorithm & Accelerator Co-Design

1 Rice University, Houston, Texas, USA 2 Meta, Redmond, Washington, USA

Evaluation ResultsBackground & Motivation

• Challenges for eye tracking in AR/VR
– >240 FPS
– Small form factor
– Power consumption in mW
– Visual privacy

• Existing works
– An order of magnitude slower (i.e., 30 FPS)
– Large form factor and low visual privacy due

to the adopted lens-based cameras

 Fail to meet the requirements

Unexplored Opportunities for Eye Tracking?

• Eye tracking is an essential human-machine interface
modality in AR/VR

Proposed EyeCoD

EyeCoD System Overview

ISCA 2022

• Can we build a lensless eye tracking system?
– A lensless camera, i.e., FlatCam

• Small form factor, i.e., 5-10x thinner
– An AI acceleration chip featuring algorithm and accelerator co-design

• >240 FPS
• mW power consumption

• FlatCam-based algorithm & accelerator co-design (EyeCoD)
– Leverage FlatCam’s much reduced form-factor to design a real-time eye

tracking system (i.e., > 240 FPS), incorporating

• Sensing-processing interface
• Predict-then-focus algorithm pipeline
• Dedicated accelerator attached to FlatCam

• EyeCoD system
– The core idea in the system side is to replace lens-based cameras to

lensless FlatCams smaller form factor

EyeCoD Algorithm

EyeCoD Accelerator

• Predict-then-focus pipeline
– Stage 1: Image reconstruction

• Sensing-processing interface
replaces FlatCam sensing & model first
layer with coded masks

– Stage 2: ROI prediction
• Predict and crop the most
informative core eye area
• Once per 50 frames

– Stage 3: Gaze estimation
• Estimate the gaze direction
based on extracted ROIs
• Processed for each frame

• Evaluation setups
– AI models

• RITNet for eye segmentation
• FBNet-C100 for gaze estimation

– Eye tracking datasets
• OpenEDS 2019 for eye segmentation
• OpenEDS 2020 for gaze estimation

– Metrics
• Gaze estimation accuracy, Model FLOPs
• Throughput, Energy efficiency

– Benchmark baselines
• EdgeCPU (Raspberry Pi), CPU (AMD EPYC 7742)
• EdgeGPU (Nvidia Jetson TX2), GPU (Nvidia 2080Ti)
• Prior eye tracking accelerator, CIS-GEP

– EyeCoD AI chip
• Silicon prototype and configurations

Silicon prototype

• EyeCoD over SOTA accelerators
– EyeCoD over CPU/GPU platforms

• EyeCoD achieves up to 2966x, 12.7x, 14.8x, and 2.61x throughput improvements
over EdgeCPU, CPU, EdgeGPU, and GPU

– GCoD over SOTA eye tracking accelerators
• EyeCoD achieves on average 12.8x throughput improvement and 8.1x higher
energy efficiency over CIS-GEP, respectively

– Breakdown analysis
• EyeCoD algorithm (P.F.) leads to 1.99x improvements
• EyeCoD accelerator designs, i.e., Input., Partial., and Depth. further offers 1.22x,
1.28x, and 1.29x improvements, respectively.

• P.F. : Predict-then-focus pipeline
• Input. : Sequential-write-parallel-read input activation buffer design
• Partial. : Partial time-multiplexing workload orchestration
• Depth. : Intra-channel reuse for depth-wise layers

Acknowledge:
NSF RTML &

EPCN programs

• EyeCoD accelerator features
– Partial time-multiplexing mode for

workload orchestration
• Balance the diff. execution frequencies of
ROI prediction and gaze estimation
• 2.31× speed up over time-multiplexing
mode; 1.6× higher energy efficiency over
concurrent mode

– Intra-channel reuse for depth-wise
convolutional layers (DW)

• Reduce 71% of DW’s latency

– Activation partition and memory access
parallelism

• Save 36% activation memory
• Save 50~60% activation BW

(a) Gaze estimation only
(b) ROI and gaze estimation when gaze uses

< 80% computational resources

(a) Column-wise intra-channel reuse
(b) Deeper row-wise intra-channel reuse

	Slide Number 1

